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Extensible Internet applications increasingly rely on language safety for
protection, rather than using protection mechanisms based on virtual
memory. For example, the Java language now provides protection for applets,
servlets, agents and active networks. Unfortunately, typical safe language
systems do not have the support for resource control, revocation, and on-
demand program termination present in traditional operating systems. Naive
attempts to add these features to a language can easily backfire: Sun recently
deprecated Java's thread termination methods because of subtle interactions
with Java's synchronization and abstraction mechanisms.

In this thesis, I argue that these problems arise from a lack of clear
structure in safe language systems. Often, these systems allow objects,
threads, and code to pass freely from one program to another, blurring the
boundaries between programs. To restore the boundaries, I introduce the idea
of a safe language task that encapsulates a program's objects, threads, and
code, and I argue that a system based on the task model can provide strong
and simple guarantees about resource control, thread management,
termination, revocation, and whole-program optimization. I present two
implementations of the task model: the J-Kernel, which uses Java remote
method invocation for inter-task communication, and Luna, which extends

Java's type system to express the task model directly.
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CHAPTER ONE:
INTRODUCTION

Modern programming languages are often expected to perform
traditional operating system duties, but they are not ready to replace
operating systems yet. This thesis argues that programming languages must
incorporate additional operating systems features if they are to implement
operating system functionality.

The distinction between programming languages and operating
systems used to be clear. Programming languages were tools to write
applications without having to enter assembly code by hand, while operating
systems were tools to manage a system’s resources and protect one
application from another. These days, however, developers of extensible
applications often expect programming languages to perform functions
traditionally associated with operating systems. Browsers, servers, agent
systems, databases, and active networks all support extensions written in a
safe language such as Java. In these systems, the language’s type safety
protects the application core from the extensions (and the extensions from
each other) by restricting the operations that extensions are allowed to
perform.

However, type safety does not prevent a program from consuming too
many resources, or ensure that runaway program execution can be stopped
cleanly. Nor does type safety provide a large-scale framework for structuring
communication between extensions. In addition to type safety, language-

based protection systems need an aggregate structure that encapsulates a



program’s resources, and guides program termination, resource management,
security analysis, and communication between programs.

Existing aggregate structures, such as Java’s class loaders and thread
groups, are ad hoc and suffer from undesirable and unexpected interactions
with the language’s type system [Sar97, Javb]. The main weakness of these
existing structures is that they manage subsets of a program’s resources in
isolation: class loaders track a program’s code, but say nothing about a
program’s threads and objects, while thread groups track a program’s threads
but not its code or objects. Thus, current structures cannot make guarantees
about the interactions between code, threads, and objects. This thesis makes
two contributions toward solving this problem:

* It proposes a more comprehensive aggregate structure, called a
task, which controls a program’s code, objects, and threads
together. In this respect, a task is analogous to a process or task in
a traditional operating system.

» It proposes inter-task communication mechanisms that
distinguish code, objects, and threads belonging to one task from
those belonging to other tasks. This clarifies the boundaries
between tasks and allows the system to guarantee properties of
tasks. For example, the systems presented in this thesis ensure
that a task's threads only execute the task's own code. Unlike
current Java communication mechanisms, the communication
mechanisms presented in this system are general purpose: they
may be used as easily for agent-to-agent communication as for

applet-to-browser or servlet-to-server communication.



The rest of the thesis is as follows: chapter 1 motivates and describes
language-based protection and the task model in detail. Chapters 2, 3, and 4
describe two particular implementations of the task model, the J-Kernel and
Luna. Chapter 5 explores the task model in more generality, discussing
related work and alternate approaches to implementing the task model.

Chapter 6 concludes.

1.1 Motivation: the challenges of a programmable internet

Operating systems with complex protection mechanisms, such as
Multics [CV65], were designed for large, centralized, multi-user compute
servers, where the OS had to prevent one errant program from disrupting
other users. The past 20 years have seen a shift away from centralized
computation to networks of single-user personal computers. PC’s often run
unprotected operating systems like Windows 98 or MacOS, partially because
networking protocols allow individual computers to fail without disrupting
the whole network. Mass acceptance of fully protected PC operating systems,
such as NT and Linux, has been slow relative to the rapid acceptance of the
PC’s themselves. The trend towards small, distributed computers continues
with the spread of hand-held and embedded processors. In light of these
developments, why worry about protection at all?

The continuing need for protection in a network is due to the spread of
executable content and mobile code. First, several forms of executable content
are already in wide use: web pages commonly contain Javascript code or Java
applets, e-mail often contains executable attachments, and word processor
documents often contain postscript code or macros. Such content has already

caused serious network-wide damage. In particular, e-mail attachments are



often executed with no protection at all, and are therefore vulnerable to
malicious viruses. Second, the Internet has shifted functionality from users’
desktops to remote web sites, which limits a user’s ability to customize
applications (major web sites such as Yahoo, Altavista, Amazon, and Hotmail
often contain large data sets, vigorously maintained availability, and
proprietary functionality, which cannot be practically transferred to user
PC’s). Many people have advocated mobile code, such as agents [GKC+98],
servlets [Java], active database extensions [GMS+98], and active network
extensions [Wet99], to restore a user’s ability to customize applications.

In order to execute code embedded in a document, a user must choose
to download a document and execute the code. This makes attacks more
difficult; a hacker's only hope is to post or send a document with embedded
code, and then hope that someone will choose to execute the code.

Agents, servlets, active database extensions, and active networks take
the opposite approach, where an extension is actively injected into a remote
host, and begins execution with no user intervention. This is inherently more
susceptible to attacks, especially in systems that allow anyone to upload code.
Even if such systems require authentication before allowing code to execute
and perform auditing to track and deter malicious users, protection is
important, because hackers often find ways to circumvent authentication and
auditing mechanisms. Typical attacks rely on the fact that networking
software often has bugs, is misconfigured, or protected by weak passwords
[Spa89]. By increasing the programmability of the Internet, active extensions
add another weapon to a hacker's arsenal. For example, suppose that Zeke
wants to attack Kim's database, and that Kim's friend Alex is trusted to load

Java extensions to Kim's system. If Zeke can guess Alex's password, then he



can load an extension onto Kim's system, which can then perform a denial of
service attack. The protection offered by Java in Kim's system is still essential
to prevent Zeke from attacking the database's integrity and secrecy, although
it is not sufficient to protect the database's availability. By contrast, if Kim
allowed friends to upload unsafe code to her system, then her system’s
integrity and secrecy would be violated as well—in effect, her security would
become as weak as the weakest of her trusted friends (which in turn are as
weak as the weakest of their trusted friends). In addition, even trusted code
may contain bugs; protection mechanisms limit the disruption caused by a

trusted, but faulty, extension.

1.2 Protection mechanisms

The previous section motivated protection in extensible internet
applications. This section looks at several different potential protection
mechanisms for such applications: virtual memory protection, software fault

isolation, capability mechanisms, and language-based protection.

hardware enforcement software enforcement

address-based virtual memory SFI

type-based capability systems language-based

Figure 1.1: Classifying protection mechanisms



Broadly, these mechanisms are classified into “address-based” protection and
“type-based” protection on one axis, and hardware enforced and software

enforced on another axis, as illustrated in Figure 1.1.

1.2.1 Address-based protection mechanisms

Current operating systems rely on protection mechanisms provided in
hardware, specifically, memory protection, user/supervisor execution levels,
and traps to switch levels. Memory protection is based on checking the
validity of addresses issued by every instruction accessing memory. The
user/supervisor privilege levels provide one execution mode where the access
privileges are enforced and one where they can be changed. The traps (or call
gates) provide a controlled transfer from user to supervisor level.

The key aspect of address-based protection is that it is based on the
values of addresses issued by a program—these are checked and possibly
translated—and not on how the program uses the data stored at those

addresses.

1.2.1.1 Virtual memory protection

In current microprocessors, the address-based protection is
implemented as part of the virtual memory hardware. In CISC
microprocessors, the set of accessible addresses (i.e., the address space) is
represented by the page tables, while in RISC microprocessors with a
software-managed TLB it is represented by the current set of valid TLB
entries. The common characteristic of all these implementations is that the
granularity of the protection mechanisms is a virtual memory page frame on
the order of a few kilobytes, 4KB being the most typical. While it is possible to

use smaller page frames in some implementations, this is generally inefficient.



1.2.1.2 Softwarefault isolation

Address-based protection can also be implemented in software using a
technique called software fault isolation (SFI) [WLA+93, Sma97]. In SFI, an
executable is analyzed and modified to enforce that all memory references lie
within the address space. Part of the enforcement is by analysis and part is by
the insertion of explicit address checking or “sandboxing” instructions. These
extra instructions ensure that the value of an address in a register lies within
the bounds held in other registers that are protected from program
modification. A privileged execution level is implemented by instruction
sequences that are inserted without being subject to SFI. The details of these
instruction sequences depend highly on the characteristics of the machine
language being manipulated. For example, SFI is much more efficient on
RISC processors with fixed sized instructions than on CISC processors with
variable sized instructions. Using SFI, the granularity of address space is
generally larger than with hardware-based mechanisms (e.g., an SFI address
space is typically larger than a hardware page) because the cost of

enforcement increases with the number of regions.

1.2.2 Type-based protection mechanisms

Address-based mechanisms perform access control on the addresses
that a program references, without worrying about how the program
generates addresses or what a program stores in the addresses to which it has
access. By contrast, a type-based protection mechanism limits a program's
ability to create values, by providing only a limited set of operations to
manipulate values. For example, two integers may be added together to

create a new integer, but two addresses cannot be added together to create a



new address. This section considers two classes of type-based protection:
capability systems, which rely largely on hardware mechanisms to enforce the
type system, and language-based protection, which relies mostly on software

enforcement.

1.2.2.1 Capability systems

In a capability system [EB79, Lev84, PCH+82, Red74, WLHS81], data
values are distinguished from pointers (capabilities) and the system enforces
that data values cannot be used as capabilities. The basic idea in such systems
is that a program must first acquire a capability to a resource in order to access
the resource. The type system ensures that a program cannot forge a
capability to a resource that it should not have access to.

Some capability systems add a tag bit to every word in memory to
distinguish data and capabilities [CKD94], and the processor restricts the
operations allowed on values that are tagged as capabilities. In practice,
however, this has led to complex processor architectures that are tied to
particular protection models or programming languages [PCH+82], and
expensive custom memory technologies.

Other capability systems use an ordinary processor's virtual-memory
features to partition memory into data and capability segments. While this
led to performance problems in early systems [WLHS81], because a program
must trap into the kernel to manipulate capabilities, more recent systems
[SSF99] have argued that advances in microkernel design make the cost of
such traps acceptable. A more difficult problem, though, is that segregated
data and capability segments complicate the programming model, because

capabilities cannot be easily mixed with data in data structures. One possible



solution to this problem is to use cryptographic capabilities [HEV+98,
TMvR86], which are large random numbers that are nearly unforgeable
because they are difficult to guess. Such capabilities are easier to store in data

structures, since they are just numbers.

1.2.2.2 Language-based protection mechanisms

Language-based protection relies on the safety of a programming
language’s type system to restrict the operations that a program is allowed to
perform. The language provides a set of types (integers, functions, and
records, for instance), and operations that can manipulate instances of
different types. Some operations make sense for some types but not others.
For instance, a Java program can invoke a method of an object, but it cannot
perform a method invocation on an integer.

Type-safe languages implement capability based access control very
naturally: a pointer (also called a reference in Java jargon) cannot be forged,
and can therefore serve as a capability. Languages typically provide
additional access control mechanisms, such as Java’s private , default,
protected , public ,and final access qualifiers that specify which code has
access to which fields and methods of an object. Wallach et al [WBD+97]
discusses Java access control mechanisms in detail. One can design safe
languages that have more sophisticated access control. For instance, Jones and
Liskov [JL78] extended a language’s type system to talk about access rights
directly, to provide a similar functionality to advanced capability systems
such as Hydra [WLHS81]. Recently Myers and Liskov [ML97] have extended

this idea to cover information flow control.
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A key issue of language-based protection is ensuring that type safety
and access control are enforced. Type enforcement may be done dynamically
or statically. In the former case, a compiler inserts run-time checks into the
compiled code. In the latter case, the compiler analyzes the program to ensure
that it respects the type system's constraints without requiring explicit run-
time checks. Static type enforcement is a key advantage of language-based
protection over traditional capability systems, whose dynamic checks are
difficult to implement efficiently without special hardware.

In practice, most programming languages use a combination of static
and dynamic enforcement. For instance, Java can statically verify that a
variable of type String  will always point to a String  object or contain the
null pointer. On the other hand, typical Java implementations perform
dynamic bounds checks when an array is accessed. Some languages, such as
Scheme, perform almost all type enforcement at run-time, which tends to slow
program execution.

Safe languages hold many potential advantages over other protection
mechanisms. Since all programs run in a single address space, programs can
communicate without expensive address space switches. While IPC (inter-
process communication) is often an expensive operation in virtual memory
based systems, in a safe language system a call from one program to another
may be a simple function call. Furthermore, data can be shared between
programs at a fine-grained level; programs can share individual objects rather
than entire virtual memory pages. For example, ethernet cards typically
receive network packets smaller than a page size, which means that traditional
operating systems must either copy each incoming packet into application

memory to prevent one application from seeing other applications' packets
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that landed on the same page, or waste space by receiving only one packet on
each page.

Modern programming languages are good at both expressing and
enforcing abstractions. Programs aren’t limited to sharing arrays of raw bytes:
the language can statically enforce the integrity of shared abstract data types,
which allows programs to communicate at a higher semantic level. For
example, the IOLite [PDZ99] and FBuf [DP93] operating system facilities are
based on linked lists of buffers, and the validity of the linked lists must be
checked (e.g. for non-circularity) when the lists are copied from one process to
another. A safe language can statically enforce invariants such as non-
circularity of a list.

Safe languages also make it easier to write more flexible, secure
programs. They guard against programming mistakes that lead to
vulnerabilities. For example, guaranteed array bounds checks guard against
buffer overflows that have been exploited by attackers in traditional systems
[Spa89]. Typical safe languages support advanced features like object-
orientation and higher order functions, which aid the construction of
extensible systems, and naturally accommodate dynamic loading.

Since safe languages hide the details of the underlying processor,
programs written in these languages tend to be portable across a wide variety
of architectures, including small, embedded systems that lack the hardware
and OS infrastructure needed for hardware-enforced protection. This

portability is an advantage for mobile code systems.
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1.3 Where does language-based protection fall short?

The previous section argued the advantages of language-based
protection over other protection mechanisms, but unfortunately, language-
based protection has serious drawbacks. The performance of safe languages
tends to lag behind lower level languages like C, typical language-based
systems support only one language, and relying on a language for protection
requires trusting that the language's compiler (the just-in-time compiler in
Java's case) and run-time system are written correctly. Other research has
made great strides in attacking these problems ([BSP+95], [HLP98],
[MWC+98], [NL98], [Sha97], [WA99]). This thesis focuses on a different set of
problems, arising from the lack of OS features and structures in current
language-based systems. Current language-based systems do not adequately
support termination, revocation, resource accounting, optimization in the

presence of dynamic loading, and analyzing the aggregate system structure.

1.3.1 Termination

Java’s mechanism for terminating programs is based on thread groups.
For example, a web browser creates a thread group for each applet that it
downloads. As the applets execute, Java’s run-time system places each thread
spawned by an applet in the applet’s thread group. To shut down an applet,
the browser terminates the applet’s thread group, which stops all of the
applet’s threads. While this approach to termination seems reasonable on first
glance, closer inspection reveals several difficult problems:

* The wrong code gets interrupted: in Java, a call from an applet
to the browser is just a function call, so that the browser code

runs in the applet's thread. The applet can kill or suspend the
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thread while the browser code is running, possibly leaving the
browser in an inconsistent or deadlocked state.

Malicious code eludes termination: terminating a malicious
program's threads does not terminate the program's code, which
may still exist in objects that the malicious program created and
passed to other programs. If one of these other programs
invokes the rogue object methods, the malicious code is revived.
Java mitigates this problem by making key datatypes final (e.g.
Str ing , array types) or primitive (e.g. int , float ) so that they
cannot contain overridden methods, but a purer object-oriented
language would have more difficulties.

Upcalls and peer-to-peer communication are not supported: a
browser cannot use one of its own threads to call an applet,
because this would give the applet the ability to execute in a
thread outside the applet’s thread group, and this execution
would not be stopped when the applet’s thread group is
terminated. Instead, the browser must transfer control to an
applet thread before calling any applet code, which is
cumbersome, slow, and requires the programmer to carefully
track which method invocations might call applet code.
Mutually suspicious peer-to-peer communication (e.g. applet-to-
applet or agent-to-agent communication) is even harder, because
neither side trusts the other side to perform the needed thread
switch.

Damaged objects violate abstract datatype integrity: under

Java's synchronization mechanisms, a thread may enter an
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object's method, acquire a lock, start an atomic operation, and
then get terminated in the middle of the operation, releasing the
lock and leaving the object in a “damaged” state that violates its
intended abstraction.

* Resources are not reclaimed: when a traditional operating
system shuts down a process, both the process's threads and
memory are shut down. Java's termination is weaker, stopping
threads but not necessarily reclaiming other resources. Java’s
String.intern method is an example of this: any program
can use this method to add strings to a system-wide hash table,
and these strings are not garbage collected even when the
program exits. Aggressive resource reclamation is more difficult
in a language-based environment, which encourages sharing
data between programs, than in a traditional operating system
based on explicit IPC (although newer, single address space
operating systems also encourage sharing—see Mungi
[HEV+98], for example).

Because of the problems with thread groups, Sun recently deprecated
the stop method in the classes Thread and ThreadGroup , leaving no

officially sanctioned way to stop an applet [Javb].

1.3.2 Revocation

In ordinary Java, pointers can serve as capabilities, but once a program
is given a pointer to an object, that pointer cannot be revoked. Revocation is a
desirable feature for several reasons. First, it helps to implement the principle

of least privilege, since it is better to give someone access to something for
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only the necessary duration and then revoke the access than to give them
access forever. Revocation also accommodates changing preferences over
time. An agent once considered trustworthy may abuse the trust and
necessitate revoking its privileges. At a lower level, revocation is a good way
to give someone temporary, fast access to a resource, such as idle network
buffer space or a rectangle in video memory. In addition to these device-
specific examples, revocation is also used in general purpose operating system
mechanisms: for instance, FBufs [DPP93] dynamically revoke write access to
buffers when data is transferred between protection domains. Finally,
revocation is necessary for termination: access to any services exported by a
program must be revoked when the program is stopped, because these
services are no longer available after the program’s code is unloaded.

Revocation has historically been a problem for capability systems, and
it is particularly difficult at the language level, because every pointer could
potentially be used as a capability. While adding a level of indirection to
every capability may be a way to implement revocation in an operating
system with coarse-grained capabilities [Red74], adding a level of indirection
to every Java pointer is undesirable.

Naturally, the programmer can add a level of indirection only to those
objects whose protection is critical. Figure 1.2 shows how a revocable version
of the earlier class A can be created. Each object of Ais wrapped with an object
of AWrapper , which permits access to the wrapped object only until the
revoked flag is set. However, it is not always obvious which objects require
such protection. Vitek et al [BV99] argue that critical, but unprotected
subobjects often leak out of a protected object through field references and

method invocations.
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class A {
public int methl1(int al, int a2) {...}
}

class AWrapper {
private A a;
private boolean revoked;
public int methl1(int al, int a2) {
if('revoked) return a.methl(al, a2);
else throw new RevokedException();

public void revoke() { revoked=true; }
public AWrapper(A realA) {
a = realA, revoked = false; }

}
Figure 1.2: Using indirection to implement revocation

1.3.3 Inter-program dependencies and side effects

Analyzing the security of a system requires analyzing the
communication patterns between programs. Limited, well-defined
communication channels make this easy; unconstrained fine-grained sharing
makes a mess. The Java API, unfortunately, is quite large, making it difficult
to identify the points at which security must be enforced. One of the
downsides of a programming language’s ability to express abstractions is that
it is all too easy to create complex interactions between components of a
system. Consider Java’s String  class, which was originally not a final class
(i.e. programs could override its methods). Because applets and browsers
exchange strings at such a fine granularity, programmers could not track all of
the interactions that occurred through String  objects, leading to security
problems in early versions of Java. Because of this, String  was later made
tinal [vdLin]. In contrast to Java’s AP, a traditional OS has a small and clearly
defined system call interface, which forms a single point of security

enforcement.
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The Java programming language makes no distinction between objects
shared between programs and objects private to a program. Yet, the
distinction is critical for reasoning about the system’s security. For example, a
malicious user might try to pass a byte array holding legal bytecode to a class
loader (byte arrays, like other objects, are passed by reference to method
invocations), wait for the class loader to verify that the bytecode is legal, and
then overwrite the legal bytecode with illegal bytecode which would
subsequently be executed. The only way the class loader can protect itself
from such an attack is to make its own private copy of the bytecode, which is

not shared with the user and is therefore safe from malicious modification.

1.3.4 Resource Accounting

When objects are shared at a fine granularity, which programs should
be charged for the objects and how can memory usage be tracked? One
solution is to charge a program for the memory that it allocates. However,
this breaks down when programs share data. If program A creates an object
and shares it with program B, then A is charged for the object for as long as B
retains a pointer to it, even if A is no longer using the object. Even after A
shuts down, it may be charged for memory indefinitely.

Another solution is to charge for all the objects reachable from a
program's roots. Unfortunately, this approach is dangerous when programs
share abstract data types. Program A can give program B what looks like a
small object, but in fact contains a private field pointing to large amounts of
A's private data, and program B gets charged for all of A's data. In fact, Bis
still charged for the data even after program A has exited, since A’s data

cannot be garbage collected while B still has a reference to it. Fine-grained
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sharing looks less pleasant when any shared object can act as a resource Trojan

horse.

1.3.5 Dynamic loading limits optimizations

When compiled naively, safe languages tend to run much more slowly
than lower level languages such as C. To reduce this performance gap, safe
languages rely on relatively sophisticated optimizations. Many optimizers
[DDG+96, FKR+99, Javc, MS99, WAFD+98, IKY+99, BCF+99, BK99] rely on
global information (such as “this method is never overridden and may
therefore be inlined”) that may be invalidated as code is dynamically loaded.
One way to reconcile these whole-program optimizations with dynamic
loading is to undo optimizations as necessary when new code is loaded
[IKY+99, HCU92, BCF+99, Javc]. Suppose a server uses the Java class
Vector , but never overrides the methods of this class. In this situation, the
server may inline method invocations on objects of type Vector . If an applet
subsequently overrides these methods, however, the server’s code must be
dynamically recompiled to remove the inlining, because the applet might pass
an object with the overridden methods to server, and the server might invoke
one of these methods. This strategy is complicated to implement, requiring
close cooperation between the compiler and run-time system. Moreover, in a
language-based protection system, where multiple programs are loaded into a
single environment, it penalizes one program for the actions of another
program. Why should a server have to undo its internal optimizations
because of code contained in a dynamically loaded applet? It is difficult to
predict the performance a program when its optimization depends on other

programs’ code.
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1.4 The task

The problems listed in the last section stem from a lack of an

appropriate aggregate structure in existing language-based protection

environments:

Terminating a program requires at least some sort of aggregate
structure to track which threads to stop, but this is not sufficient:
terminating only threads leaves objects and code, suggesting
that the aggregate structure also encompass objects and code.
Analyzing the security of a system requires determining where
the boundaries between programs are; these boundaries are
determined by the structure of the system as a whole.
Implementing revocation requires deciding which objects are
sensitive enough to warrant the cost; objects shared between
programs are more likely to need revocation than objects that are
private to a program.

Resource accounting requires knowing which resources belong
to which program, which is again an issue of aggregate
structure.

Whole-program optimization must account for all programs
loaded into a shared environment, which is too coarse: it would
be better to apply such analysis at a finer granularity, so that one
program’s behavior does not penalize another program’s
performance. For this, we need some aggregate structure

marking the boundaries between programs.

In this thesis, I propose an aggregate structure called a task, which

consists of all of a program’s objects, code, and threads together. Tasks are
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analogous to traditional operating system processes and tasks. By dealing
with objects, code, and threads together rather than in isolation, tasks make
guarantees about the interaction between the three. For example, a task’s
threads are guaranteed only to run the task’s own code—they cannot cross
over a task boundary and run someone else’s code. Since Java objects contain
code as well as data, implementing this guarantee requires distinguishing
method calls on a task’s own objects (which only contain a task’s own code)
from method calls on other tasks’ objects, which requires distinguishing one
task’s objects from another tasks” objects. Thus, a task’s structure in terms of
objects is intertwined with the task’s structure in terms of threads and code.
Tasks form a framework in which revocation, termination, system
analysis, resource accounting, and whole-program optimization are tractable:

* Only pointers to objects in other tasks need to be revocable;
pointers to a task’s own objects need not support revocation.

*  When a task is terminated, its threads, code, and objects are shut
down together. All pointers into the terminated task are
revoked, so that the task’s objects are unreachable, and can
therefore be garbage collected. Although stopping the task’s
threads suddenly may produce damaged objects in the task,
these objects are unreachable, so no live task will see them.

* Tasks establish a clear boundary between programs, so that
analyzing inter-program communication is easier.

* Tasks provide a very simple resource accounting model: a task
pays only for those objects that it explicitly allocates with the
Java new operator; it is not charged for objects allocated by other

tasks.
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* A compiler can perform whole program optimizations at a task
granularity, because dynamically loading code into one task
does not affect the code of other tasks. I will call these whole-task

optimizations.

1.4.1 Distinguishing local and remote objects

The key feature of the task model is the distinction between one task’s
resources and another task’s resources. Actions on a task’s local resources
differ from actions on other task’s resources. For example, the compiler or
run-time system must perform revocation checks to access remote pointers to
other tasks’ objects, but not to access local pointers to a task’s own objects. In
addition, method invocations on remote pointers much switch threads so that
a task’s thread does not run another task’s code.

The distinction between local and remote objects might be enforced by
the run-time system or by the programmer. To start with, consider an
implementation where the run-time system makes the distinction with no
explicit directives from the programmer. Perhaps each object would be
tagged with the task that allocated it, and every operation on an object would
tirst check to see whether the object is local or remote. However, this would
slow down operations on local objects and operations on remote objects.

Even if the run-time system could implement the local/remote
distinction efficiently with no help from the programmer, explicit
programmer involvement has a several advantages. First, remote code is
more dangerous than local code (local code is trusted, while code in another
task may have been written by an adversary), so the programmer should

know which method calls are on remote objects, so that the method’s
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arguments and return values are treated with caution. Second, remote
pointers are revocable, and if remote pointers aren’t statically distinguished,
any pointer is potentially revocable. This leaves Java programs on shaky
ground: how can a programmer deal with a world where ordinary looking
objects suddenly stop working? For instance, suppose String  objects were
revocable. Strings are often used as keys for hash tables, and a standard Java
hash table is implemented as an array of linked lists, where each link holds a
key/value pair. If one of the String  keys is revoked, it will fail every time it
is queried for equality. Not only does this prevent the revoked string’s own
associated value from being retrieved, it also prevents links following it in its
list from being reached, which will probably come as a surprise to the
programmer.

Rather than have the run-time system try to determine remoteness
dynamically, another approach is to have the programmer implement the
local/remote distinction with little or no help from the compiler and run-time
system. The programmer mentally labels all code, objects and threads with a
task, and then explicitly inserts extra code at method calls to remote objects to
handle threads, and explicitly relinquishes pointers into terminated tasks so
that they can be garbage collected. DrScheme [FFK+99] demonstrates that this
strategy can work, at least in the absence of peer-to-peer communication.
However, the more complex the interactions are between tasks, the more
work the programmer must do to track which objects belong to which task.
Furthermore, this strategy leaves the task model to the programmer’s
discretion—the language cannot guarantee that it is respected. Because of

this, the compiler and run-time cannot rely on the task model. This rules out
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whole-task optimizations, which are unsound without the guarantee that a
task’s threads only run a task’s own code.

The strategy I adopt falls between the two approaches just described.
Enforcing the task model is not left entirely to the run-time system nor to the
programmer; instead, the programmer gives enough information to the run-
time system for it to insert the correct revocation checks and thread switches.
With this information, the run-time system guarantees that any well-typed
program respects the task model. The following chapters describe
implementations of the task model based on this approach. In the J-Kernel,
the programmer creates explicit capability objects that mark the boundaries
between tasks. Method invocations on these capability objects follow Java’s
Remote Method Invocation API and semantics, including thread switches and
passing non-capability arguments by copy. Luna, on the other hand, modifies
Java’s type system to express the boundaries between tasks: remote pointers

have special types, marked syntactically with a ~ character.



CHAPTER TWO:
THE J-KERNEL

I developed the J-Kernel as a prototype of the task model. The J-Kernel
is written entirely in Java, with no native methods and no changes to the Java
bytecode format or the underlying virtual machine. This allows the J-Kernel
to run on commercial Java platforms, which have tended to be faster than
customizable open source Java platforms such as Kaffe. It also made it easy to
distribute the J-Kernel publicly, so that others could easily download it,
examine it, and run it on various platforms. Finally, a Java-only
implementation is easier to develop than an extension to a virtual machine,
making it simpler to test the ideas of the task model.

Although the J-Kernel does not change the virtual machine, it does
make some changes to the Java API, because parts of the existing API are
inappropriate to the J-Kernel's task model. In particular, Java's
ClassLoader , Thread , and ThreadG roup classes contain methods that
could undermine the J-Kernel's guarantees. Therefore, these methods must be
hidden from the programmer. Rather than simply eliminate these classes, the
J-Kernel preserves the original Java API as much as possible by interposing its
own classes [WBD+97], with the same class and method names, but with a
safer implementation of the problematic methods. The J-Kernel uses its
control over dynamic linking to substitute the safe classes for the dangerous
classes. While this approach required no changes to the virtual machine, it
was limited in some ways, which will be described later in the chapter.

The task model groups code, objects, and threads into tasks, and

requires a mechanism to distinguish task-local entities from remote entities.

24
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In Java, this requires restricting the types of objects shared between tasks in
some way: if there are no restrictions, then any objects can be shared, method
invocations on these objects can invoke arbitrary code in other tasks, threads
can cross task boundaries, and problems with thread and task termination
arise.

Nevertheless, method invocation on shared objects is a very useful
communication mechanism in Java, since it naturally expresses the idea of one
task exporting a service to another task. Therefore, the J-Kernel uses method
invocation as the basis for its inter-task communication, but does so in a way
that accommodates revocation and thread control. In order to ensure that
code from a terminated task is not executed, and to ensure that threads do not
directly cross task boundaries, a cross-task method invocation should perform
a revocation check and a thread switch. Therefore, the J-Kernel only allows
special capability objects to be shared between tasks, and ensures that method
invocations on the capability objects perform revocation checks and simulate a
thread switch.

To preserve the invariant that only capability objects are shared
between tasks, method invocations on capability objects pass capability objects
by reference but pass other types of objects by copy. Note that a deep copy of
non-capability objects is necessary: the method invocation must recursively
traverse and replicate all non-capability pointers in a data structure to copy
the data. Copies, revocation checks, and thread switches increase the cost of
inter-task communication when compared to ordinary Java method
invocations. However, section 2.7 argues that this cost is acceptable for real

applications.
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2.1 Java Remote Method Invocation

The semantics for method invocations on capabilities are essentially the

same as the semantics of Java's Remote Method Invocations (RMI) [Javd], which

supports method invocations over a network. Because of this similarity, the J-

Kernel bases much of its API on the Remote Method Invocation API. This

section describes RMI in detail, so that the J-Kernel’s interface presented in the

following sections will make sense.

RMI divides objects into two categories:

Serializable objects are passed by deep copy through remote
method invocations. Serializable objects must belong to a class
that implements the interface Serializable . The
Serializable interface has no methods, but serves as a flag to
let the run-time system marshal the object into a platform-
independent byte stream (a “serialized” version of the object).
RMI serializes an object, recursively serializing data pointed to
by the object, sends the bytes over a network, and deserializes
(unmarshals) the bytes on a remote computer to form a deep
copy of the original object.

Remote objects are passed by reference through remote method
invocations. Remote objects must belong to a class that
implements one or more remote interfaces, where a remote
interface is an interface that extends the interface Remote. All
methods declared in the remote interfaces may be invoked on a
remote reference (a “stub”) to a remote object. Like
Serializable , Remote has no methods and serves only as a

flag to the run-time system to identify remote objects, and to
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identify which methods of a remote object may be invoked
remotely.
If an object is neither remote nor serializable, then it cannot be passed
through a remote method invocation.
Figure 2.1 shows an example of serializable objects passed through an

RMI invocation:

class Request implements Serializable
String path;
byte[] content;

interface Serv let extends Remote

byte[] service(Request req) throws RemoteException, IOException;

class FileServlet implements Servlet

public byte[] service(Request req)
throws RemoteException, IOException

{
/I Open a file and return t he data contained in the file:
FilelInputStream s = new FilelnputStream(req.path);
byte[] data = new byte[s.available];
s.read(data);
s.close();
return data;

}

}
Figure 2.1: Serializable object passed through RM|
Since FileServlet implements the remote interface Servlet it can

be passed from one machine to another as a reference to a remote object. Both
byte[] and Request are serializable, and may be passed by copy through
remote invocations on the service method. Notice how the semantics of

remote method invocation differ from local invocation: invocations of the
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service methods on a local Servlet  object would pass and return the

Request and byte[] objects by reference rather than by copy.

interface DispatchServlet extends Servlet

void addServlet(String path, Servlet servlet) throws
RemoteException;

}

class SimpleDispatcher implements DispatchServlet
Hashtable servletTable = new Hashtable();

public void addServlet(String path, Servlet servlet)
throws RemoteException

servletTable.put(path, servlet);

}

public byte[] service(Request req)
throws RemoteException, IOException

Servlet s = (Servlet) s ervletTable.service(req.path);
return s.get(req);

Figure 2.2: Dispatch servlet example

A DispatchServlet object, shown in Figure 2.2, forwards requests to
other servlets by making remote invocations on their service methods. A
remote invocation on the addServlet method passes a String  object by
copy and the Servlet argument by reference, since String  is serializable
and Servlet implements remote interfaces. For example, a function with a
remote reference to a DispatchServlet object can create and add a new

servlet as follows:
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void makeFileServlet(DispatchServlet d)
throws RemoteException

d.addServlet("foo/servlet”, new FileServlet());

}
Figure 2.3: Remote method invocation example
This simple example hides a large amount of complexity. In particular
as the new FileServlet object is passed from one machine to another in the

remote method invocation to addSer vlet , stub objects for the FileServlet

object are automatically generated on both machines.

2.2 J-Kernel capabilities

The combination of pass by reference and pass by copy make RMI a
tlexible and easy to use communication mechanism. In fact, I could have
simply used Java's RMI implementation, which is a standard part of most
virtual machines, as the J-Kernel's communication mechanism. However, the
existing RMI implementations were orders of magnitude slower than what I
desired. Furthermore, at the time I wrote the J-Kernel, the RMI specification
did not support revocation. Although revocation support has since been
added to RMI, in the JDK1.2's Remote.unexportObject method, this
support is less explicit than J-Kernel's support. The key difference is that RMI
implicitly creates stubs to remote objects when the remote objects are passed
through a remote invocation. Because these stubs are outside the
programmer's control, RMI’s revocation abilities are limited: revoking access
to a remote object revokes everyone’s access to it. In other words, RMI's
revocation is not selective.

By contrast, the J-Kernel makes a visible distinction between the

original object and capability objects that act as remote stubs for the original
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object. An object implementing remote interfaces cannot be passed directly
from one task to another. Instead, the programmer first calls the static
Capability.create method, which takes an object implementing remote
interfaces and returns a capability (a stub object) that points to the original
object, which I will call the target object. The capability implements all the
remote interfaces implemented by the target object. Invocations on the
methods of the capability's remote interface are redirected to the target object
after copying the arguments and switching to the target object's task.

In addition to implementing the remote interfaces, the capability object
extends the class Capability ~, which contains a public method revoke that

revokes access to the capability:

public class Capabil ity

public static Capability create(Remote obj);
public final void revoke() throws SecurityException;

Figure 2.4: The Capability class

Capability.create is the only mechanism available to the
programmer to create instances of the class Capability  ; the J-Kernel
prevents programs from directly instantiating a subclass of Capability
This ensures that all capability instances implement the semantics specified by
Capability.create

Despite the distinction between RMI stubs and J-Kernel capabilities,
programs written for J-Kernel are very similar to programs designed for RML.
For example, the code shown above for the Request , Servlet ,

FileServlet , DispatchServlet , and SimpleDispatcher run on the J-
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Kernel with no modification. The makeFileServlet function, however,
must be changed to create an explicit capability, rather than relying on

implicit stub creation:

void makeFileServlet(DispatchServlet d)
throws RemoteException

{
Capability ¢ = Capability.create(new FileServlet());
Servlet s = (Servlet) c;
d.addServlet("foo/servlet", s);

}

Figure 2.5: Cresating a capability

In the makeFileServlet example, the call to Capability.create
expresses a task's desire to export a service to other tasks. In fact, the primary
purpose of Capability.create is to explicitly mark the establishment of
inter-task communication channels. This aids in analyzing a program's
communication patterns; a simple way to look for the communication entry
points into a task is to search for all the task's calls to Capability.create
Whereas RMI is often used to transparently spread a single protection domain
across many virtual machines, the J-Kernel is designed to protect multiple
domains running in a single machine. Thus, while RMI tries to hide
boundaries, the J-Kernel seeks to expose boundaries.

A second purpose of Capability.create is to provide selective
revocation. After a task creates a capability, it can revoke it by calling the
capability's revoke method. When a capability is revoked, its pointer to its
target object is overwritten with null , causing all future invocations of the
capability's remote interface methods to fail by raising an exception. In

addition, since a revoked capability no longer points to the target object, the
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target object may be eligible for garbage collection, so that one task cannot use
a revoked capability to prevent another task from collecting garbage.

If a task creates multiple capabilities for a single target object, it can
selectively revoke access to the target object by revoking some of the
capabilities while leaving other capabilities unrevoked:

FileServlet f = new FileServlet();
Capability c1 = Capability.create(f);
Capability c2 = Capability.create(f);

))'Revoke c1 but not ¢c2:
cl.revoke();

Figure 2.6: Selective revocation

The target object of a capability may itself be a capability [Red74]:

FileServlet f = new File Servlet();
Capability c1 = Capability.create(f);
Capability c2 = Capability.create(cl);
é:”l.revoke();

Figure 2.7: Multipleindirection

In this case, €2 serves as a restricted version of c1. c2 can be revoked
without revoking c1, though if c1 is revoked, c2 is effectively revoked.

A task cannot revoke a capability created by a different task; if a task
calls the revoke method on someone else's capability, the revoke method
throws a SecurityException . This is a simple form of access control to the
revoke method; the need for more complex schemes, such as access control
lists or special revocation capabilities, did not arise in practice.

A third purpose of Capability.create is clear semantics.

Capability objects pass through cross-task method invocations without
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changing their identity, so that Java instanceof = and == operators behave
predictably when applied to capability objects. For languages like Standard
ML, which have no such operators for immutable values, this is not as

important of an issue.

2.3 Capability implementation

So far, this chapter has motivated the design of the J-Kernel, and the
existence of Capability.create in particular. Now it is time to examine
the implementation of Capability.create in detail. Consider a capability

based the following remote interface:

interface | extends Remote

int f(int x, int y) throws RemoteException;

}

class C implements | {...}

| target = new C();
Capability ¢ = Capability.create(target);

Figure 2.8: Capability creation example

This call to Capability.create generates a stub object that
implements the remote interface | and points to the Ctarget object. This stub
object is an instantiation of a class generated dynamically by the J-Kernel the
first time a C object is passed to Capability.create . The dynamically

generated class is depicted in Figure 2.9.
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public class C$STUBSLRMI extends Capability implements |
{

private C target;

public int f(int x, int y) throws RemoteException
{
ThreadTaskState state = getThreadTaskState();
Task sourceTask = state.currentTask;
ThreadSegment calle rThreadSegment =
state.activeThreadSegment;

try
{

state.switchin(targetTask);

int ret = target.f(x, y);

state.switchOut(sourceTask, callerThreadSegment);
return ret;

}
catch(Throwable e) {...}

Figure 2.9: Capability implementation

The code shown in Figure 2.9 is written as Java source code; in reality,
the J-Kernel generates Java bytecode, which is passed to a class loader directly,
without requiring source-to-bytecode compilation.

The stub class C$STUB$LRMIbelongs to the same package as C, so that
it has access to Ceven if Cis not public. The stub class is a subclass of
Capability , so that it inherits the revoke method, and implements the |
remote interface, which declares the method f. The generated
implementation of f forwards each cross-task call to the target object in the
line “int ret = target.f(X, y); ”. Inaddition, f performs three actions:

it checks for revocation, it switches thread segments, and it copies arguments.

2.3.1 Revocation

The revocation check is crude but efficient: when the capability's

revoke method is called, its target field is set to null. This causes the
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method invocation “target.f(x, y) ” to raise a null pointer exception, so

that the capability is unusable.

2.3.2 Thread segments

Thread segment switching is a little more complicated. According to
the task model, threads should not migrate across task boundaries, so a cross-
task call should switch to a new thread in the callee's task, rather than running
in the caller's thread. However, the expense of switching threads would
increase the cost of a cross-task call by an order of magnitude on a typical
virtual machine. Therefore, the J-Kernel compromises the task model to a
certain extent: the caller and callee run in the same thread, but run in different
thread segments.

Conceptually, the J-Kernel divides each Java thread into a stack of
thread segments. In each cross-task call, the J-Kernel pushes a new segment
onto this stack. When the call returns, the thread segment is popped. The J-
Kernel class loader then hides the system Thread class that manipulates Java
threads, and interposes its own Thread class with an identical interface but an
implementation that only acts on the local thread segment. The key difference
is that Thread modification methods such as stop and suspend act on
thread segments rather than Java threads, which prevents the caller from
modifying the callee's thread segment and vice-versa. This provides the
illusion of thread-switching cross-task calls, without the overhead for actually
switching threads. The illusion is not totally convincing, however—cross-task
calls really do block, so there is no way for the caller to gracefully back out of
one if the callee does not return. This problem is one drawback of a Java-only

implementation, which cannot control threads and stacks at a low level
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(chapter 4 describes how a customized virtual machine can implement thread

switching efficiently).

public synchronized void switchin(Task targetTask)

{
/I Set the thread's current thread segment and current task
/I to point to the callee:
activeThrea dSegment = null; // new segment created lazily
currentTask = targetTask; // thread now in the target task
}

public synchronized void switchOut(Task sourceTask,
ThreadSegment callerThreadSegment)
{

/I Set the thread's current thread segment and current task
/l to point to the caller.

currentTask = sourceTask;

activeThreadSegment = callerThreadSegment;

/I Check to see if the caller's thread segment's state has

/I changed since we last saw it (for instance, the thread

/I segment may have been suspended or stopped, or the caller

/I task may have been killed entirely). If so, take the

/I appropriate action:

if(callerThreadSegment != null &&
callerThreadSegment.alertFlag)

{

...If segment was suspended, wait until it is resumed
...If segment was stopped, throw a ThreadDeath exception

if(sourceTask.dead) ...throw a TaskDeath exception...;

Figure 2.10: Thread segment implementation

Each J-Kernel thread holds a ThreadTaskState  object that tracks
which task the thread is currently running in, and which thread segment is the
topmost segment on the thread's stack of segments. A capability switches
thread segments by calling the method switchin  to move to a new thread
segment, and switchOut  to return to the original caller segment (see Figure
2.10). For efficiency, switchin  does not allocate a new thread segment object
immediately, but instead creates one on demand if the callee later calls the

method Thread.currentThread to get the Thread object that corresponds
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to the new thread segment. Otherwise, no thread segment object is allocated
for the callee. The switchln  method does, however, make a note that the
thread is now running in another task, so that the J-Kernel's task termination
mechanism can discover which threads are running in a task that is about to
be terminated. In addition, the switchin  and switchOut methods are
declared synchronized, in order to coordinate with the task termination

mechanism (this will be discussed in detail below).

2.3.3 Copying arguments

In addition to checking for revocation and switching thread segments, a
cross-task call makes a deep copy of all non-capability arguments and return
values. The Java language already passes primitive (non-reference) types such
asint by copy, so no special handling of these types is required. For
reference types, the J-Kernel implements two copying mechanisms. First, like
Java's remote method invocation, the J-Kernel can use Java's serialization to
copy objects: if an argument's class is declared to implement Serializable ,
the J-Kernel serializes an argument into an array of bytes, and then
deserializes the byte array to produce a fresh copy of the argument.

While serialization is convenient because many built-in Java classes
implement Serializable , it slows cross-task calls by one to two orders of
magnitude. Therefore, the J-Kernel also provides a “fast copy” mechanism,
which makes direct copies of objects and their fields without using an
intermediate byte array. If a class is declared to implement the interface
FastCopyGraph or FastCopyTree , then the J-Kernel automatically
generates specialized copy code that recursively copies the class's fields. For

FastCopyGraph classes, the copy code keeps a hash table to ensure that no
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object gets copied more than once, even if the data structure has cycles. For
FastCopyTree classes, no hashing is performed, speeding the copying
process in the case where the programmer knows that a data structure is tree
shaped.

There are some subtleties in the copying process. First, the task model
states that code does not migrate across task boundaries. Therefore, the
copying process should not instantiate a class in the target task if the target
task does not want to load the class. For copying via serialization, this
restriction is enforced naturally: as an object is deserialized in the target task,
Java's serialization process contacts the task's class loader to request the
object's class. If the task does not want to load the class, the class loader
throws an exception and the serialization process fails with an exception. On
the other hand, fast copy code generated by the J-Kernel must perform an
explicit check to make sure that the object's class can be loaded in the target
task. This check is implemented with a hash table lookup (based on the
object’s Class object), which adds an extra overhead to the fast copying
process.

Second, for objects with synchronized methods, the copying process
must acquire a lock on the object as the object is copied, to make sure that the
copy is a consistent snapshot of the original object. This was a bug in the
release version of the J-Kernel: no lock was acquired. It also appears to be a
bug (or feature) of Java serialization, which does not acquire locks during the
serialization process.

Third, it matters in which task the copying takes place. In Java,
programmers are allowed to write custom serialization and deserialization

methods for each class, which means that code from the source task may run
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during serialization, and code from the target task may run during
deserialization. Therefore, the J-Kernel switches back and forth between tasks
as it serializes and deserializes arguments (this is complicated by the fact that
fast copy data structures may contain serializable objects). Luckily, the cost of
this switching is small compared to the cost of the serialization. In addition,
both serialization and fast copying may trigger dynamic class loading, which
must be performed in the correct task.

In general, the J-Kernel's copying mechanisms are more complicated
and ad hoc than I would have liked. The fact that copying can fail at run-time
because the target task does not link to the same classes as the source task has
not caused problems in practice, but seems inelegant, since a run-time
mechanism is used to catch a link-time problem. These concerns motivated
the development of Luna, which breaks up the copying process into smaller

and simpler pieces.

2.4 Creating and terminating tasks

J-Kernel tasks are organized hierarchically, so that when a task is
terminated, all of the child tasks that it spawned are terminated as well. This
ensures that a malicious task cannot elude termination by creating child tasks.

When a new J-Kernel task is created, it contains no classes, objects, or
thread segments. To establish state in the new task, the parent task seeds the

new child task with an initial capability object:

Resolver resolver =
Task child = new Task(resolver);
Capability ¢ = child.seed(seedClassName);

Figure 2.11: Seeding a new task
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The seed method takes the name of the class as an argument, creates
an instance of the named class in the child task, and builds a capability
pointing to this new object, which is returned to the parent task. The
“resolver” passed into the Task constructor controls the child task’s linking
(i.e. its mapping of class names to classes); this is discussed in detail in the next
section.

The capability returned by the seed method serves as an initial
communication channel between the parent and child, through which
additional capabilities may be passed to establish more channels between the
parent and child, or to establish channels between the child and arbitrary
other tasks. In this respect, the child is at the mercy of the parent; if the parent
does not give the child any capabilities, then the child has no way to make
calls to other tasks. Thus, the parent can easily create child tasks with
arbitrarily limited privileges. This encourages the principle of least privilege,
and contrasts with traditional operating systems such as Unix and Windows
NT, where it is relatively difficult to launch a process with arbitrarily limited
privileges.

When a J-Kernel task is shut down, its thread segments are stopped and
its capabilities are revoked, making the task’s objects semantically
unreachable. Unfortunately, the Java garbage collector cannot always tell that
the task’s objects are unreachable. If a task’s thread segment is blocked on a
cross-task call, the J-Kernel must wait until the cross-task returns to eliminate
the thread segment’s stack frames, since these stack frames are stuck in the
middle of the stack and the ]J-Kernel has no direct access to the virtual
machine’s stack implementation. Thus, pointers in these stack frames may

keep the task’s objects alive in a frozen state: the objects are completely
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inaccessible to any running thread, but their garbage collection is delayed.
This does not affect the J-Kernel’s semantics, but it does affect the machine’s
resource usage.

The J-Kernel uses Java’s Thread.stop  method to implement thread
segment termination. This method asynchronously raises an exception in a
running thread. The exception then propagates up the thread’s stack,
popping off stack frames until the stack is empty. Oddly, Java programs can
simply catch the exception and continue execution, thwarting Thread.stop s
attempt to stop them. To fix this, the J-Kernel rewrites Java code so that any
catch clauses propagate the J-Kernel’s termination exception upward rather
than catching it. Naturally, the J]-Kernel’s own run-time system classes are not
subject to this restriction—they catch the thread termination exception at the
boundaries between thread segments so that individual thread segments are
terminated without killing a whole thread.

In order to terminate a task’s thread segments, the J-Kernel must first
tind the task’s thread segments. To speed up cross-task calls, the J-Kernel
maintains no data structures mapping a task to its thread segments. In the
absence of such a data structure, the J-Kernel searches for a task’s thread
segments by examining the top thread segment of every thread in the system.
For each thread, it locks the thread’s ThreadTaskState  object so that the top
thread segment is stable (this is the reason that cross-task calls require
locking), and then examines the top thread segment to see if it belongs to the
dying task. If so, it raises a termination exception in the thread.

The limitations of thread segments motivated my decision to develop
Luna by modifying a virtual machine rather than by writing it in pure Java.

Unlike the J-Kernel, Luna frees a dead task’s object as soon as the next garbage
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collection starts. In addition, Luna keeps a data structure holding a task’s
threads, so that termination does not require a search through all of the

threads in the system.

2.5 Task linking

In the standard Java applet architecture, applets have very little access
to Java’s class loading facilities. In contrast, ]-Kernel tasks are given
considerable control over their own class loading. Each task has its own class
namespace that maps names to classes. Classes may be local to a task, in
which case they are only visible in that task’s namespace, or they may be
shared between multiple tasks, in which case they are visible in many
namespaces. A task’s namespace is controlled by a user-defined resolver,
which is queried by the J-Kernel whenever a new class name is encountered.
A task can use a resolver to load new bytecode into the system, or it can make
use of existing shared classes. After a task has loaded new classes into the
system, it can share these classes with other tasks if it wants, by making a
SharedClass capability available to other tasks. Shared classes (and,
transitively, the classes that shared classes refer to) are not allowed to have
static fields, to prevent sharing of non-capability objects through static fields.
In addition, to ensure consistency between tasks, two tasks that share a class
must also share other classes referenced by that class.

Shared classes are the basis for cross-task communication: tasks must
share remote interfaces and fast copy classes to establish common methods
and argument types for cross-task calls. Allowing user-defined shared classes

makes the cross-task communication architecture extensible; standard Java
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security architectures only allow pre-defined “system classes” to be shared
between tasks, and thus limit the expressiveness of cross-task communication.
Ironically, the J-Kernel needs to prevent the sharing of some system
classes. For example, the file system and thread classes present security
problems. Others contain resources that need to be defined on a per-task
basis: the class System, for example, contains static fields holding the
standard input/output streams. In general, the J]-Kernel tries to minimize the
number of system classes visible to tasks. Classes that would normally be
loaded as system classes (such as classes containing native code) are usually
loaded into a privileged task in the J-Kernel, and are accessed through cross-
task communication, rather than through direct calls to system classes. For
instance, our group developed a task for file system access that is called using
cross-task communication. To keep compatibility with the standard Java file
API, we have also written alternate versions of Java's standard file classes (in a
way similar to the interposition proposed by [WBD+97]), which are just stubs
that make the necessary cross-task calls. The J-Kernel moves functionality out
of the system classes and into tasks for the same reasons that micro-kernels
move functionality out of the operating system kernel. It makes the system as
a whole extensible, i.e., it is easy for any task to provide alternate
implementations of most classes that would normally be system classes (such
as file, network, and thread classes). It also means that each such service can
implement its own security policy. In general, it leads to a cleaner overall
system structure, by enforcing a clear separation between different modules.
Java libraries installed as system classes often have undocumented and
unpredictable dependencies on one another. For instance, Microsoft's

implementation of java.io.File depends on
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java.io.DatalnputStream , which depends on com.ms.lang.SystemX
which depends on classes in the abstract windowing toolkit. Similarly,
java.lang.Object depends transitively on almost every standard library
class in the system. In 1986, Richard Rashid warned that the UNIX kernel had
“become a ‘dumping ground’ for every new feature or facility” [Ras86]; it
seems that the Java system classes are becoming a similar dumping ground.

In general, the J-Kernel strives to accommodate communication
between mutually suspicious tasks, rather than forcing one task to trust
another task; cross-task calls through capabilities, for example, work even in
the absence of trust. However, the J-Kernel’s shared class mechanism is
asymmetric: one task creates a class, and then other tasks import the class, so
that these other tasks must trust the first task’s definition of the class. This
means that two mutually suspicious tasks cannot introduce new shared
classes into the system by themselves, because neither task trusts the other
task to define the mutually shared classes correctly. Instead, they must rely on
a third party that they both trust to define the classes. While this is not ideal,
there were no obvious alternatives. If two mutually suspicious tasks both
have their own definitions of a class that they want to share, it is undecidable
in general whether these definitions are equivalent (since classes contain
code). The system could decide the equivalence by requiring that the

definitions be byte-for-byte equal, but this leads to versioning problems.

2.5.1 Creating resolvers

All linking in the J-Kernel works through user-defined resolvers. To
create a resolver, a task implements the resolveClassName  method of the J-

Kernel interface Resolver , shown below. This method takes the name of a
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class as an argument and returns either a byte array containing new bytecode,
or a SharedClass object from another task (the return type of Object isa
crude way to represent a union of these two types; in retrospect, the J-Kernel
should have used an additional class to represent this union). When a new
task is created, it is given an initial resolver. Afterwards, a running task can
add more resolvers in order to dynamically load more code.

public interface Resolver extends Remote
Object resolveClassName(String name) thr ows RemoteException;

Figure 2.12: Resolver interface

The resolver interface is considerably simpler and clearer than Java’s
ClassLoader API, and it shields the programmer from the dangers of raw
class loaders. Unlike class loaders, resolvers do not have to load and link
classes in separate steps, nor do they have to keep a table of previously loaded
classes in order to handle multiple requests for the same class (the J-Kernel
will only query a task’s resolver once for each class it needs). In addition, the
J-Kernel comes with several built-in resolver implementations for loading
classes from the file system or the network (for tasks that have access to these
resources), building tables of name-to-class mappings, and combining
resolvers together.

Although resolvers express linking at a higher level than class loaders,
in practice we found that this level was not high enough. People using the J-
Kernel had more difficulties with linking than with any other J-Kernel
mechanism. The most common error was to instantiate a class separately in
two tasks, rather than sharing it. One common version of this problem was

remembering to share some class A, but then forget to share a class B
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referenced by A. The first major difficulty in the J-Kernel was simply
diagnosing this kind of problem, since errors are not detected until run-time,
often after several tasks are created. Sometimes the J-Kernel’s linker detected
the error and raised an exception. At other times, the error was detected by a
failed cast. Detailed error messages were essential; the ]-Kernel reports errors

like “SharedClassException: Apple refers to Bear, Bear

refers to Cross, Cross has static fields ” and
“SharedClassException: if two tasks share the class
Launch, then they must also share the class LaunchData

The resulting exceptions are often thrown across task boundaries, and it was
difficult to copy them from task to task without losing the original stack trace.
Sometimes Java’s run-time would throw away the message contained in the
exception as it propagated through Java’s class loading functions.

To minimize linking problems, I wrote a small module language to
express class sharing statically. In this language, tasks declare the classes that
they create and the shared classes they export to other tasks or import from
other tasks. A simple command-line tool reads these declarations, examines
the class files named in the declarations to check that they obey the J-Kernel’s
sharing rules, and collects the class files into an archive file, similar to a Java
JAR file, but which also contains linking information. A special resolver then
reads these archive files when the J-Kernel runs. The advantage of this
approach is that the command-line tool catches many potential errors
statically. Ideally, it would catch all linking errors, but Java’s reflection

mechanisms and casts make this difficult.
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2.6 J-Kernel micro-benchmarks

To evaluate the performance of the J-Kernel mechanisms we measured
a number of micro-benchmarks on the J-Kernel as well as on a number of
reference systems. Unless otherwise indicated, all micro-benchmarks were run
on 200Mhz Pentium-Pro systems running Windows NT 4.0 and the Java
virtual machines used were Microsoft’'s VM (MS-VM) and Sun’s VM with
Symantec’s JIT compiler (Sun-VM). All numbers are averaged over a large

number of iterations.

2.6.1 Null LRMI

Table 2.1 dissects the cost of a null cross-task call (null LRMI) and
compares it to the cost of a regular method invocation, which takes a few tens
of nanoseconds. The J-Kernel null LRMI takes 60x to 180x longer than a
regular method invocation. With MS-VM, a significant fraction of the cost lies
in the interface method invocation necessary to enter the stub. Additional
overheads include the synchronization cost when changing thread segments
(two lock acquire/release pairs per call) and the overhead of looking up the
current thread. Overall, these three operations account for about 70% of the
cross-task call on MS-VM and about 80% on Sun-VM. Given that the
implementations of the three operations are independent, we expect
significantly better performance in a system that includes the best of both

VMs.
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Table 2.1: Cost of null method invocations

Operation MS-VM | Sun-VM
Regular method invocation 0.04ps | 0.03ps
Interface method invocation 0.54ps | 0.05us
Thread info lookup 0.55us | 0.29ps
Acquire and release lock 0.20ps | 1.91ps
J-Kernel LRMI 2.22us | 5.41ps

To compare the J-Kernel LRMI with traditional OS cross-task calls,
Table 2.2 shows the cost of several forms of local RPC available on NT. NT-
RPC is the standard, user-level RPC facility. COM out-of-proc is the cost of a
null interface invocation to a COM component located in a separate process
on the same machine. The communication between two fully protected
components is at least a factor of 3000 from a regular C++ invocation (shown

as COM in-proc).

Table 2.2: Local RPC costs using NT mechanisms

Form of RPC Time
NT-RPC 109us
COM out-of-proc | 99us
COM in-proc 0.03ps

2.6.2 Threads

Table 2.3 shows the cost of switching back and forth between two Java
threads in MS-VM and Sun-VM. The base cost of two context switches
between NT kernel threads (NT-base) is 8.6ls, and Java introduces an
additional 1-2ps of overhead. This confirms that switching Java threads

during cross-task calls would add a significant cost to J-Kernel LRML.
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Table 2.3: Cost of adouble thread switch using regular Java threads
NT-base | MS-VM | Sun-VM

8.6us | 9.8us | 10.2us

2.6.3 Argument Copying

Table 2.4 compares the cost of copying arguments during a J-Kernel
LRMI using Java serialization and using the J-Kernel’s fast-copy mechanism.
By making direct copies of the objects and their fields without using an
intermediate Java byte-array, the fast-copy mechanism improves the
performance of LRMI substantially[] more than an order of magnitude for
large arguments. The performance difference between the second and third
rows (both copy the same number of bytes) is due to the cost of object

allocation and invocations of the copying routine for every object.

Table 2.4: Cost of argument copying

Number of MS-VM MS-VM Sun-VM Sun-VM
objects LRMI LRMI LRMI LRMI
and size w/serialization | w/fast- w/serialization w/fast-
copy copy

1 x 10 bytes 104ps 4.8us 331ps 13.7ps

1 x 100 bytes | 158us 7.7Us 509us 18.5us
10 x 10 bytes | 193us 23.3us 521ys 79.3us

1 x 1000 bytes | 633us 19.2us 2105ps 66.7s

In summary, the micro-benchmark results are encouraging in that the
cost of a cross-task call is 50x lower in the J-Kernel than in NT. However, the J-
Kernel cross-task call still incurs a stiff penalty over a plain method
invocation. Part of this is due to the J-Kernel’s pure Java implementation; the
following chapters show that a customized virtual machine performs faster

cross-task calls.
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2.7 Application benchmarks

A couple of significant applications have been written for the J-Kernel.
Chi-Chao Chang developed a plug-in for Microsoft’s IIS web server to extend
the server with J-Kernel servlets. Dan Spoonhower developed an integrated
web and telephony server to support web/telephony servlets, such as a voice-
mail servlet with an HTTP interface. More information about these systems is
contained in Hawblitzel et al [HCC+98] and Spoonhower et al [SCH+98]. This
section summarizes the key performance results from these papers.

To quantify the impact of the J-Kernel overheads in the performance of
the HTTP server, several simple experiments measure the number of
documents per second that can be served by Microsoft’s IIS and J-Kernel
running inside IIS. The hardware platform consists of a quad-processor
200MHz Pentium-Pro (results obtained on one- and two-processor machines
are similar). The parameter of the experiments is the size of document being
served. All three tests follow the same scenario: eight multithreaded clients
repeatedly request the same document. IIS serves documents in a traditional
way—by fetching them from NT’s file cache, while the J-Kernel uses a servlet
to return in-memory documents. Table 2.5 shows that the overhead of passing
requests into and out of the J-Kernel decreases 1IS’s performance by 20%.
Additional measurements show that the ISAPI bridge connecting IIS to the J-
Kernel accounts for about half of that performance gap and only the

remainder is directly attributable to the J-Kernel execution time.
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Page size IIS throughput [IS+]-Kernel throughput
(pages per second) (pages per second)

10 bytes 801 662

100 bytes 790 640

1000 bytes 759 616

The web/telephony server experiments were carried out on a 300MHz
Pentium II, running Windows NT 4.0. The Java virtual machine used was
Microsoft’s VM version 1.1, with SDK 2.01. Table 2.6 shows two benchmarks.
The first tests the performance of transferring voice-quality audio through the
system. Two servlets hold a “conversation” by exchanging two-second
chunks of audio data over a phone line. Each servlet records the data sent by
the other onto disk. The “initiator” and “responder” columns of the table
show the performance of the two servlets. The second test, shown in the
“voice servlet” column, measures the cost of making an HTTP request to a
voice-mail servlet to check for mail. This includes the cost of contacting a
separate authentication servlet to authenticate the request, and the cost of

creating an HTML response to the request.

Table 2.6: Web/Telephony server performance

Initiator Responder  [VoiceServlet
Elapsed time [ms] 40000 40000 67
CPU time [ms] 1503 1062 18.5
Cross-domain calls 3085 2671 8
Cross-domain data transfer [B] 962304 984068 3596
Cross-domain calls overhead [ms]|[9.37 8.71 0.037
Cross-domain copy time [ms] 291 2.58 0.01
Time/call [ms] 0.0030 0.0033 0.0046
Bytes/call 312 368 450
Copy overhead/call 31% 30% 27%
Copy overhead [bytes/us] 331 381 360
Cross-domain call overhead 0.62% 0.82% 0.20%
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In all cases the overheads of crossing tasks (which include the cost of
copying arguments and then return values) are below 1% of the total
consumed CPU time. On the average, crossing tasks costs between 3-4.6¢s
and an average call transfers between 312 (Initiator) to 450 (VoiceServlet) bytes.
The cost of copying data accounts for 27-31% of an average cross-task call.
This suggests that overheads of crossing tasks in real applications when no
data transfer is involved are between 2.1-3.3s. The value can be contrasted
with the cost of a null cross-task call, measured in an isolated tight loop on a

300MHz machine: 1.35es.

2.8 Conclusions

The J-Kernel demonstrates the feasibility of the task model, and shows
that the overheads introduced by enforcing the task model are small relative
to the performance of Java applications. Just as importantly, it demonstrates
that tasks can be built with a reasonable programming model—although
Java’s RMI interface is hardly elegant, it does allow the programmer to
express and enforce abstractions at a high level.

The J-Kernel’s Java-only implementation was convenient for a
prototype, but probably insufficient for a real-world product. It would be
difficult to do very accurate accounting of task resource consumption (see
Czajkowski et al [CVE98] and Back et al [BHL00] for comments on this), and
the J-Kernel had to compromise its thread switching semantics because it did
not have low-level access to threads and stacks. In addition, built-in classes
such as Class , Object ,and String have behaviors and dependencies that
are hard to work around. While bytecode generation and modification can

overcome some problems, such as preventing code from catching thread
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termination exceptions, it slows class loading and is often awkward to
implement. Experience with the J-Kernel motivated the implementation of

Luna, described in the next chapter.



CHAPTER THREE:
LUNA DESIGN

Luna is similar in spirit to the J-Kernel, but makes several
improvements. First, Luna strips away much of the complexity associated
with the J-Kernel’s RMI-based interface, replacing it with a relatively simple
and orthogonal type-based interface. The J-Kernel’s capabilities are black
boxes—the programmer annotates classes as Remote, Serializable ,
FastCopyTree , and FastCopyGraph , calls Capability.create , and
after some magic bytecode generation, the J-Kernel returns a capability
suitable for inter-task communication. Luna makes inter-task communication
more transparent and flexible by breaking the J-Kernel’s black box
mechanisms into simpler primitives. The validity of these primitives is
enforced statically by Luna’s type systems rather than by the J-Kernel’s
dynamic mechanisms.

Second, the J-Kernel only lets tasks share capabilities; other types of
objects must be passed by copy, making it impossible to share arrays and
object fields directly. Luna introduces a limited form of sharing for these
types, so that programs can share data directly. Nevertheless, Luna still relies
heavily on copies; it is often easier to copy a remote object than to manipulate
remote fields and arrays directly.

Luna’s third improvement over the J-Kernel is in its implementation.
In writing the J-Kernel’s run-time system, I was frustrated by Java’s inability
to manipulate threads, stacks, locks, and heaps at a low level, and in general I
was disappointed by the performance of commercial just-in-time compilers.

Therefore, I implemented Luna as an extension to Marmot [FKR+99], a highly

54
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optimizing virtual machine from Microsoft Research. Marmot was designed
as a “way-ahead-of-time” compiler rather than a just-in-time compiler; it
performs whole-program optimizations but does not support dynamic
loading. This fits in with Luna’s preference of static analysis over run-time
analysis—although Luna adds dynamic loading and unloading to Marmot, it
does so at the granularity of tasks rather than classes, and uses Marmot’s
whole-program optimizations to statically optimize tasks when they are
loaded.

This chapter describes Luna’s design in detail. It introduces Luna’s
remote pointer types, which allow tasks to both share data structures and
implement J-Kernel style capabilities, and describes how the semantics of
some operations, such as copying, differ from the J-Kernel’s semantics. Luna’s

implementation and performance are discussed in the next chapter.

3.1 Remote pointers and revocation

Luna extends Java’s type system with remote pointers, which are
analogous to J-Kernel capabilities—remote pointers can point to objects in
other tasks, while ordinary, local pointers can only point to a task’s own
objects. However, while J-Kernel capabilities only support a limited set of
remote interface types, there is a remote pointer type corresponding to every
local pointer type. A remote pointer type is syntactically represented as a
local pointer type followed by a ~ character. Figure 3.1 shows the syntax for
Luna's type system; standard Java types are written in plain text and the new

types are written in bold.
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Type = PrimitiveType | ReferenceType | Ref er enceType~
PrimitiveType = boolean | byte | short | int | long

| char | float | double
ReferenceType = ClassType | InterfaceType | Type[]

Figure 3.1: Lunatype system

In order to preserve the advantages of safe language protection (fine-
grained sharing, low cross-task call overheads, simple capability-based access
control, and enforcement of abstract data types), remote pointers support the
same operations as local pointers: field/array element access, method
invocation, synchronization, equality testing, casting, and instanceof
testing, although most of these operations have different semantics and
performance for remote pointers.

The key difference between remote pointers and local pointers is
revocation. Luna's task model requires that remote pointers into a task be
revoked when the task is terminated, but revocation is also useful at a finer
granularity. To realize these uses, Luna gives the programmer a special
handle with which to control access to remote pointers. This handle is a Java
object called a permit. A permit is allocated in an unrevoked state, and can
later be revoked:
public class Permit {

public Permit(); // constructor to allocate an unrevoked permit
public void revoke(); // method to revoke the permit

Figure 3.2: The Permit class

A remote pointer is implemented as a two-word value (like Java’s long
and double types) that consists of a local pointer paired with a permit. The @

operator converts a local pointer into a remote pointer:
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Permit p = new Permit();
Strings ="h ello";
String~sr=s @ p;

Figure 3.3: The @ operator

Once a task has used the @operator to create a remote pointer, it can
pass the remote pointer to other tasks, which can use them until the remote
pointer's permit is revoked. Each operation on a remote pointer automatically
performs a run-time access check of the remote pointer’s permit: the
expression “sr.length() ” will evaluate sr 's length if p is unrevoked, and
raise an exception if p is revoked. Permits can selectively revoke access to
data: if permit pl is revoked while p2 is not, then s is accessible through the
remote pointer (S @ p2) but inaccessible through the remote pointer (s @
pl) . Note that there is no way to decompose a remote pointer into its two
parts: the local pointers to s and p cannot be extracted from sr ; this prevents
other tasks from gaining direct access to them. In other words, a task's access
to another task's data is always mediated by a permit. Saltzer and Schroeder
argue that this sort of “complete mediation,” which makes it impossible for a
task to circumvent the system’s access control mechanisms, is one cornerstone
of a secure system [SS75][WBD+97].

When a task is terminated, all the permits created by the task are
revoked, which is similar to how the J-Kernel revokes all a task’s capabilities
when the task is terminated. As in the J-Kernel, this mass revocation makes all
of a task’s objects unreachable and therefore garbage collectable.

In the J-Kernel, each capability is individually revocable. This is often
too fine a granularity. To enforce the principle of least privilege, it is prudent
to revoke access to capabilities after completing an interaction with another

task. However, if the interaction involves a large number of capabilities, this
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forces the programmer to remember to revoke each capability individually. In
Luna, permits handle this burden: a programmer simply uses a single permit
to create all the remote pointers involved in the interaction, and then revokes
all the remote pointers by revoking one permit. This aggregation of access
control is an important feature of sharing data structures, which is discussed

in more detail in the next section.

3.2 Sharing data with remote pointers

Many operations on remote pointers transfer values across task
boundaries. The type system must ensure that these transfers do not create
local pointers that cross task boundaries, since only remote pointers are
allowed to cross task boundaries. Figure 3.4 shows the typechecking rules for
local and remote field operations. Because Java is an imperative language,
there are two judgments to typecheck an expression: the judgment “e:T ”
says that an expression e has type T, and the judgment “e is an l-value” says
that the expression e can be assigned to. The statement “f is accessible”
means that an expression is allowed access to field f according to Java’s rules
for private , default, protected , and public access controls. The rules for
reading and writing remote array elements, passing arguments to remote
methods, and receiving return values from remote methods are similar to the

rules for remote field operations.
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Local field operations: Remote field operations:
e:Tl e:Tl~
T1 contains field f of type T2 T1 contains field f of type T2
fis accessible fis accessible
ef. T2 e.f: toRemote(T2)
e:Tl e:Tl~
T1 contains field f of type T2 T1 contains field f of type T2
fis accessible fis accessible
fis not final fis not final
isPrimitiveOrRemote(T2)
efisanl - value
efisanl - value

toRemote(PrimitiveType) = PrimitiveType
toRemote(ReferenceTy  pe) = ReferenceType~
toRemote(ReferenceType~) = ReferenceType~

isPrimitiveOrRemote(PrimitiveType) = true
isPrimitiveOrRemote(ReferenceType) = false
isPrimitiveOrRemote(ReferenceType~) = true

Figure 3.4: Typechecking rules for field operations

These typechecking rules allow primitive types and remote pointers to
move freely across task boundaries through field operations on remote
pointers. However, if task A has a remote pointer € to an object in task B, and
e contains a field f holding a local pointer of type T, then A cannot view this
pointer with local type T, since the pointer is local to B rather than A. From
A’s perspective, the pointer is remote, so the expression “e.f ” has type T~,
not type T. Furthermore, A cannot write to e.f atall: A cannot write one of
A’s local pointers to e.f , because e.f is supposed to contain pointers local to
B, not A, and A cannot write a remote pointer to e.f , because this remote
pointer might point to an object in any task. Although the assignment
expression “e.f = e.f ” would not violate the task model at run-time,
Luna’s type system is not strong enough to prove this.

Remote pointers cannot be used interchangeably with local pointers.

For instance, a hash table object expecting keys of type Object cannot be
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passed a remote pointer (which has type Object~ ). This forces the
programmer to either design a new type of hash table that can accommodate
remote keys (and can deal with their revocation robustly), or, more
commonly, to make a local copy of a remote object's data and use that as the
hash table key. Similarly, remote pointers, like Java's primitive types, must be
boxed by the programmer to be placed in Java's standard container classes,
such as Vector , that store Object s (this also serves a pragmatic
implementation purpose, because remote pointers are a different size than
local pointers, and are treated differently by the garbage collector).

The function below shows an example of using remote data structures.
Notice that according to the rules above, the expression “list.next ” has
type List~ , not type List . At run-time, “list.next ” evaluates to a remote
pointer containing the same permit as the remote pointer list  contains. Thus,
a single permit controls access to the entire list, not just the first element. If
this permit is revoked, access to the entire list is immediately revoked, and the
revocation is enforced by the dynamic access control checks that Luna inserts
in the expressions “list.i " and “list.next ”. This aggqregate access control
allows tasks to share data structures and still have a single point of access
control over the sharing—even if the function below scans through the list
multiple times, or scans through the list in a different order, it cannot

circumvent this access control.
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class List {
inti;
List next;

void replace(List~ list, int from, int to) {
while(list = null) {
if(list.i == from) list.i = to;
list = list.next;

Figure 3.5: Using remote data structures

The replace function shown above works on remote pointers, not
local pointers. Does the programmer have to write two copies of every
function, one for remote pointers and one for local pointers? In general, no—
Luna was designed to be used like the J-Kernel (which in turn was designed to
be used like RMI), and most interaction between tasks occurs through method
invocations on remote objects rather than through directly manipulation of
remote fields. Although one of Luna's goals is to make this sort of direct
manipulation possible when necessary, it is the exception, rather than the rule.
Unless the performance of the replace function above were particularly
critical, a programmer would typically use a replace function that acts on
local pointers, and either make a cross-task call into the task that owns the list

or make a local copy of the list and run replace on that.

3.3 Method invocations on remote pointers

Although the direct sharing mechanisms in the previous section are
very different from J-Kernel’s RMI-based communication, most interactions
between Luna tasks are still based on J-Kernel-style remote method invocation
with copies. However, Luna gives the programmer considerable flexibility in
implementing these method invocations, and allows the programmer to add

direct sharing where RMI is insufficient. Like J-Kernel capability invocations,
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method invocations on Luna remote pointers check for revocation and
transfer control from one task to another. In fact, Luna genuinely switches
threads in a cross-task method invocation, which is more powerful than the J-
Kernel’s thread segment mechanism. Luna does not automatically copy
objects from one task to another, though. Instead, the programmer specifies
how and when data is transferred across task boundaries.

Suppose we want to write a server in Luna that runs the FileServlet
class from the previous chapter (see Figure 3.6), without changing the basic
Servlet interface that it is built over in any essential way (a common situation,
since many standard Java API’s are in wide use and cannot be changed

lightly):

class Request implements Serializable {
String path;
byte[] content;

interface Servlet {
byte[] service(Request req);

class FileServlet extends Servlet
public byte[] service(Request req) {

/l Open a file and return the data contained in the file:
FileInputStream s = new FilelnputStream(req.path);

byte[] data = new byte[s.available];
s.read(data);
s.close();
return data;
}
}
Figure 3.6: FileServlet example
Suppose the server receives a request, creates a Request object, and
then wants to dispatch this request to a FileServlet running in another

task. The server cannot pass a local pointer to the Request object to the
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FileServlet  ’s task, because local pointers cannot be passed across task
boundaries. Instead, the server creates a remote pointer and passes this to the
servlet task. However, the FileServlet class, as written above, expects a
local pointer, not a remote pointer. To satisfy this expectation, an
intermediate step is needed to construct a local copy of the request. To
implement this, it is helpful to first build a function that copies a remote

Request object.

3.3.1 Copying remote objects

In the J-Kernel, copies are generated automatically by the run-time
system, which cannot be customized by the user. By contrast, in Luna, the
programmer writes copy routines, using operations on remote fields and
remote arrays as building blocks. A copy routine recursively traverses a
remote data structure, allocating new local objects to match the old remote
objects. This recursion bottoms out with primitive types, which can be passed
directly across task boundaries. Assuming that a method String.copy was
already written using these techniques, the following method produces a local
Request object given a remote Request object. For convenience, this

method is placed in the class Request , although it could be placed anywhere:

class Request {

static Request copy(Request~ from) {
Request to = new Request();
to.path = String.copy(from.url);
to.content = new byte[from.content.length];
for(inti = 0; i < from.content.length; i++)
to.content[i] = from.content[i];

Figure 3.7: Copying a Request object
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Since copy functions are written entirely in Luna code, programmers
can customize data structure copy mechanisms. A program is often able to
employ knowledge about characteristics of a data structure, such as alias
information, to improve the copy function. Furthermore, a program may
copy a data structure lazily rather than immediately, copy data into
preallocated buffer space, or never copy the data at all. On the other hand,
Luna’s more flexible approach to sharing sacrifices one feature of the J-Kernel:
after a J-Kernel cross-task call returns, the caller knows that the arguments to
the call were copied, and does not have to worry about data leaking through
side effects on shared data structures. By introducing direct sharing of data,
Luna introduces the dangers of such side effects.

In the J-Kernel, copies fail if the target task does not support the class of
the object being copied. Luna takes a different approach. Suppose String
has a subclass ColorString

class ColorString extends String {
int color;

st atic ColorString copy(ColorString~ list) {...}

Figure 3.8: Subclass example
Now suppose that task A passes an object of type ColorString  to
task B, which links to the class String  but does not link to the class
ColorString . Since B does not know about ColorString it will call
String.copy  to copy the string rather than ColorString.copy . Calling
String.copy  on an object of type ColorString  produces a String  rather
than a ColorString ~ —only the superclass data is copied, and the extra data

in the subclass gets “sliced” away.
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This may set off a few warning bells for experts in object orientation;
slicing occurs sometimes in C++ and is considered a bad idea, because the
sliced copy throws away the subclass’s overridden methods and thus behaves
differently from the original object. However, this is appropriate for inter-task
communication, because B wants to copy the data from A’s string, not the
behavior of A’s string—the behavior defined by A’s code is potentially
dangerous, and the task model guarantees that B only runs B’s own code, and
does not accidentally import A’s code at run-time. Consider the security holes
in early versions of Java caused by strings with overridden methods, which
forced Java’s designers to make the class String  final [vdLin]. One could
argue that strings must be final anyway for performance reasons, since finality
makes it easier to inline method invocations in ordinary Java
implementations. In Luna, though, there is no reason to make String  final,
other than backwards compatibility with the current Java APIL: the security
problem is solved by copying and slicing strings passed across task
boundaries, and the performance problem is solved with whole-task
optimization.

Java’s problem with strings demonstrates the tension between security
and object orientation, and Luna’s approach to copying favors security over
object orientation. However, Luna’s inter-task communication mechanisms
do not throw away object orientation entirely—method invocations on remote

objects are dispatched in Java’s normal object-oriented fashion.
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3.3.2 Combining copies and method invocation

Using the copying function from the previous section, the following
class serves as an intermediary between the server and the standard Servlet

interface:

class RemoteServlet
Servlet servlet;
remote byte[] service(Request~ reql)

/I Construct a local copy of the reques t
Request req2 = Request.copy(reql);

/I Pass the local copy of the request to the servlet
return servlet.service(req2);

Figure 3.9: Intermediary to Servlet interface

A RemoteServer object runs in the servlet’s task and transfers
requests from the server to the servlet. The server makes a method invocation
on a remote pointer to this object, passing a remote pointer to the Request

object:

class Server {
b&te[]~ dispatch(RemoteServlet~ servlet, Request req) {
Permit p = new Permit();
byte[]~ response = servlet.service(req @ p);

p.revoke();
return response;

Figure 3.10: Calling a RemoteServlet

Rather than allowing all methods to be called remotely, Luna only

allows remote method calls on methods that are declared remote . Like Java’s
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public and private , remote is simply an access control flag—it does not
change the semantics or implementation of the method. The remote flag
helps a programmer define a small set of entry points into a task, because not
every method should support remote method calls. For example, Java defines
a clone method in Object , the superclass of all classes. Without extra access
control, task A could attack task B by repeatedly calling clone on one of B’s
objects until B runs out of memory. I could have also added a flag for access
to remote fields for the sake of orthogonality, but this did not seem necessary.
Moreover, to really be orthogonal, arrays would also need such a flag, but this

would force Luna to have two different and incompatible array types.

3.4 Type system design

Luna’s extension to Java’s type system is fairly modest—there is just
one new type, the remote pointer. However, during the development of Luna
I experimented with more elaborate designs. In fact, Luna evolved from
earlier, more unwieldy designs towards its current, relatively simple state.
This section describes some of the design space that surrounds Luna’s type
system. This plays a role in Luna’s implementation, since Luna’s intermediate
language uses a more sophisticated type system than Luna’s source language
uses.

Luna’s type system was originally inspired by the regions of Tofte et al
[TT94], a memory management mechanism based on stacks of regions, where
a region is a list of blocks of memory, and memory deallocation is performed
over entire regions at once. Statically, the program directs the run-time
system to allocate each object in a particular region, and the type of each object

is annotated with the region in which it is allocated, so that a type system can
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ensure that an object is not accessed after its region is deallocated. Since there
may be an unbounded number of regions at run-time, a program uses region
variables to refer to regions statically. Translating these ideas from regions and
region variables to permits and permit variables, the replace function
shown earlier is expressed, loosely mixing formal syntax and Java syntax, as:
Ap.void replace(permit{ P} p, List{ p} list, int from, int to) {

while(list I= null) {

if(list.i == from) list.i = to;
list = list.next;

Figure 3.11: Permit variables

In this representation, the replace function is quantified over a permit
variable p, and the two-word remote pointer to the list is split into its two
components, a permit of type permit{ p} and a pointer of type List{ p}.

The permit variable connects the two components together. This
representation has two advantages over Luna’s source-level representation.
In the original Luna source code, the expressions list  and list.next both
have type List~ , which expresses the fact that both | ist and list.next

are remote pointers, but does not express the fact that at run-time, list and
list.next are protected by the same permit. By contrast, with permit
variables, the expressions list  and list.next both have type List{ p},
which explicitly signals that they are both protected by the same permit (the
permit associated with p). The second advantage of this representation is that
list isa one-word rather than two-word value, so that it is clear that an
assignment like “list = list.next ” need only transfer one word, not two.

Because of these advantages, Luna’s low-level typed intermediate language
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explicitly splits local variables holding remote pointers into permit and local
pointer components connected by permit variables.

In fact, these ideas can be generalized to encompass all pointers, both
local and remote, throughout the entire type system. Hawblitzel et al [HvE99]
describes a formalization of this idea, based on formalizations of regions
[TT94, CWM99]. This system makes no distinction between local and remote
pointers—all pointers are annotated with a permit, and there is no analogue to
Luna’s @operator. When an object is allocated, it is immediately tagged with
a permit, and it retains this permit annotation for its entire lifetime. This is
simpler, but less flexible, than Luna’s approach, where an object is first
allocated with a local pointer type and then coerced with the @operator to a
remote pointer type. In particular, the only way to revoke access to an object
is to deallocate it entirely; there is no way to selectively revoke access to an
object.

[HVE99] proposes a couple of mechanisms for extending the type
system with selective revocation, both of which are more flexible than Luna’s
mechanism. Consider how the J-Kernel can chain multiple capabilities
together, in order to restrict the access rights of an existing capability:
FileServlet f = new FileServlet();

Capability c1 = Capability.create(f);
Capability c2 = Capability.create(cl);

Figure 3.12: Chaining capabilities

Luna’s permits do not support this idiom. The @operator applied once
to a local pointer converts a local pointer type Ato a remote pointer type A~,
but there is no operator to further restrict the remote pointer type. It would

not be too difficult to modify Luna’s type system so that applying multiple
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permits to an object adds multiple tildes, so that “(new A() @ pl) @ p2 ”
has type A~~, but this is very awkward—now the programmer has to write
different methods to deal with arguments of type A~, A~~, A~~~, etc. It would
be much better if both “new A() @ p1 ” and “(new A() @ pl) @ p2 ”
had type A~, so that they could be used interchangeably.

The remote pointer “(new A() @ pl) @ p2 " is a pointer that can
only be used if both p1 and p2 are still unrevoked. Suppose we define a new
permit p3 whose lifetime is the intersection of p1’s lifetime and p2’s lifetime,
so that it is revoked as soon as either pl or p2 is revoked. Then “(new A()

@ pl) @ p2 ”isequivalent to “new A() @ p3 ”. Based on this idea, a run-

time system could implement the expression “(new A() @ pl) @ p2 " by

automatically allocating a permit p3 whose lifetime is a sublifetime of p1 and
p2.

[HvE99] proposed a variation on this: if we somehow knew that p2’s
lifetime was contained in pl’s lifetime, then we can simply implement “(new
A @pl) @p2 ”as”newA() @ p2 ” without allocating a new permit. If
permits are arranged hierarchically, so that a child permit is revoked when its
parent is revoked, then the type system can track the hierarchical relationship
between permits and coerce “new A() @ p1l " to “new A() @ p2 ”"ifp2isa
descendent of p1. Tracking this information complicates the type system,

which discouraged me from adding this to Luna.



CHAPTER FOUR:
LUNA IMPLEMENTATION AND PERFORMANCE

Luna is implemented as an extension to Marmot [FKR+99], an
optimizing virtual machine, on the x86 running under Windows NT. Whereas
the J-Kernel’s performance was limited by its portable, pure Java
implementation, Luna’s implementation favors speed and power over
simplicity and portability. Itis designed to test both the maximum possible
performance and the most complete possible semantics. Key features of the
implementation include:

* optimized thread management for cross-task method invocation,

* special “caching” optimizations for repeated accesses to remote
data,

* the use of Marmot’s whole-program optimizations in an
environment that supports dynamic loading, and

» garbage collection that treats remote pointers specially.

The main drawback of this implementation is its difficulty. Marmot is a
large piece of software, and Luna’s changes to Marmot are pervasive, intricate,
and subtle. The second major drawback is portability—Luna runs on only one
virtual machine, which is not distributable due to Marmot’s license

restrictions.

4.1 Extended bytecode format

Java implementations are split into two components, a compiler that
translates Java source code into Java bytecode, and a virtual machine that

executes Java bytecode. Luna is implemented in the same way. The Luna
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source compiler, a simple extension to the publicly available guavac compiler,
translates Luna code into Luna bytecode, which extends the Java bytecode
format with instructions to handle remote pointers. Luna’s bytecode format is
backwards-compatible with Java’s format, so that ordinary Java code will run
on Luna’s virtual machine. Luna code will not run on an ordinary Java virtual
machine, though, because Luna’s extensions require changes to the virtual
machine’s run-time system.

In general, there is one new Luna remote pointer instruction for each

standard Java local pointer instruction, as shown in Table 4.1(Java’s bytecode

format uses the “a” character to indicate a local pointer, or, somewhat

“"_n

confusingly, an array; Luna uses the “r” character to indicate a remote

pointer):

Table 4.1: Lunaremote pointer instructions

Local pointer operation | Remote pointer operation | Description
getfield, putfield getfield_r, read/write object
putfield_r fields

invokevirtual,
invokeinterface

invokevirtual_r,
invokeinterface_r

method invocation

iaload, iastore, iaload_ r, read/write array
laload, ... lastore_r, eements

laload _r, ...
arraylength arraylength_r get array length
acmp arcmp, racmp, rrcmp compare pointers
checkcast, checkcast _r, dynamic type checks
instanceof instanceof_r
monitorenter, monitorenter _r, synchronization
monitorexit monitorexit_r
aload, astore, rload, rstore, move pointers on the
areturn rreturn stack

anewarray, aaload,
aastore,

rnewarray, raload,
rastore,

operations on arrays
of pointers
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In addition, there is an instruction called restrict that implements
the Luna @operator. The following sections describe the implementation of

these instructions in more detail.

4.2 Implementing remote pointers

At a low level, Luna’s @operator is simple to implement: two move
instructions move a local pointer and a permit together so that they form a
single, 8 byte remote pointer. This requires no synchronization or memory
allocation. Once formed, remote pointers are handled much like other Java 8
byte values, such as long and double types. However, Java allows long
and double types to be loaded and stored in heap objects non-atomically, in 4
byte portions. If one thread is writing a new 8 byte value into a memory
location, another thread concurrently reading the location may end up with 4
bytes of the old value mixed with 4 bytes of the new value. This behavior
could cause security risks for remote pointers, so Luna uses 8 byte atomic
operations to load and store remote pointers in the heap shared between
threads (operations on a thread’s private stack need not be atomic). Luckily,
the x86 architecture supports several instructions that move 8 bytes
atomically. Unluckily, these instructions are all awkward—Luna ends up
moving remote pointers through the floating point registers to implement an
atomic load or store.

Like J-Kernel capabilities, Luna remote pointers support immediate
revocation: as soon as a call to a permit’s revoke method completes, Luna
guarantees that no other thread can use the permit to read or write data.
Unfortunately, this guarantee is difficult to implement efficiently, because

operations on remote pointers require both an access control check and an
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actual data access. If these operations are not performed atomically, then
revocation may not be immediate. Suppose thread A tries to use the remote
pointer e@p while thread B concurrently revokes p and then modifies e. The
tigures below show two incorrect interleavings of these operations. In Figure
4.1, thread B modifies e, and the new value in e is incorrectly leaked to thread
A, which should not be able to see this value, since B revoked p before
changing e. In Figure 4.2, thread A incorrectly causes a side effect that is

visible to thread B after B has revoked A’s access.

Thread A | Thread B Thread A | Thread B
1. check 1. check
permit p permit p
2. revoke p 2. revoke p
3. modify e 3. modify e
4.read e 4. modify e
5.read e

Figure 4.1: Read after revoke

Figure 4.2: Modify after revoke

To avoid these race conditions, remote field and array operations are
protected by critical sections. An operation first acquires a lock, then checks
the permit to make sure access has not been revoked, then, if access is granted,
performs the operation and releases the lock. If access is denied, the operation
releases the lock and throws an exception. Currently, Luna uses a single
system-wide lock for these critical sections (the same lock that is used to
protect Marmot’s memory allocation operations).

On a uniprocessor, specialized thread schedulers can implement critical
sections without explicit run-time locks [SCM99], but on a multi-processor, 1
am unaware of any way to avoid the race condition above without explicit

locks or explicit coordination between processors. Anyway, Luna is
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implemented over NT kernel threads and cannot modify N'T’s scheduler.
Luna employs one trick for remote pointer reads (but not writes) on a
uniprocessor: it first performs the read, then checks the permit, without ever
entering a critical section. Unfortunately, relaxed cache consistency prohibits
this optimization on multiprocessors.

The locks and the access check make a remote pointer operation more
expensive than a local pointer operation. There is one additional cost due to
lost optimization opportunities. Like Java, Luna defines the semantics of a
program in a strict, deterministic way (except for multithreading, which
introduces limited nondeterminism). Consider the following code:

List~x = ..,;
List~y =..,;

X = X.next;
y = y.next;

Figure 4.3: Deterministic evaluation

Because the evaluation of the x.next and y.next expressions may
throw revocation exceptions, Luna’s code generator must execute the first
expression before the second to preserve the semantics of the original
program. This limits the optimizer’s power to reorder code. In fact, ordinary
Java suffers from the same problem—even if X and y are local pointers, it is
difficult to reorder the expressions because the evaluation may throw null
pointer exceptions. On the other hand, Java does relax the consistency
requirements on data shared between threads; a thread can cache a “working
copy” of shared data and read from this working copy rather than the actual
shared data in some circumstances (the details of Java’s consistency model are

under debate; see [Pug99]). Luna could also be extended with this ability, thus
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avoiding the need to perform revocation checks on data cached in the
“working copy.” The current implementation exploits this idea for cast

operations on remote pointers, but not for field and array operations.

4.2.1 Special Java pointer operations: equality, instanceof,

checkcast, synchronization

Java supports several special operations on pointers that do not fit
neatly into Luna’s local/remote pointer model. Java programs may query
pointers for equality (with the == and != operators) and test the type of a
pointer with casts and instanceof =~ operations. Remote pointers must
support these operations, because pointer equality is used to test the end of a
data structure, such as a list, and casts are used to overcome Java’s weak static
type system. It is not clear, though, what these operations should do when
applied to a revoked remote pointer. On one hand, such an operation on a
revoked remote pointer for equality could raise a revocation exception.
Unfortunately, checking for revocation in these cases slows down program
execution without providing any security benefit. Permits protect the data
that a pointer points to—they do not necessarily need to protect the value and
type of the pointer itself; the J-Kernel allowed equality and type tests on a
revoked capability, and this was never a cause for concern.

On the other hand, omitting the revocation check is actually more
difficult to implement than performing the revocation check, because the
object pointed to by a revoked pointer may be garbage collected, which
throws away the type information needed to implement cast and

instanceof at run-time.
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Because neither solution is entirely satisfactory, the Luna semantics
allow an implementation to perform revocation checks for pointer equality
and type tests, but does not require them. The current Luna implementation
never checks for revocation in equality tests, but does check for revocation in
type tests, except where the compiler is able to eliminate the dynamic type

tests statically.

4.2.2 Synchronization

Since Luna supports communication through shared data as well as
RMI-based communication, Luna requires some form of inter-task
coordination. For example, two tasks sharing a data buffer may want to share
a lock to coordinate reads and writes to the buffer. Another example is data
copying: when a task copies another task’s data, it must lock the data to make
sure that it receives a consistent copy.

Luna assumes the use of lock-based rather than lock-free
synchronization, since Java’s language and libraries use locking for
concurrency control. The most natural way to extend Java’s synchronization
mechanisms to Luna is to allow Java synchronized  statements to act on
remote pointers as well as local pointers. For example, a function to copy a

remote Vector object acquires a lock on the remote object:

public class Vector {

public static Vector copy(Vector~ from) {
synchronized(from) {
Vector to = new Vector();
... copy data from “f rom” to “to”...
return to;

Figure 4.4: Remote synchonization
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This inter-task task synchronization mechanism raises several issues,
only some of which Luna resolves satisfactorily. First, shared locks present a
denial-of-service risk: by acquiring a lock and never releasing it, a task can
prevent another task from making progress. This is particularly problematic
for Java’s synchronized  statement, which can be applied to any object to
which a task has access. This breaks an object’s encapsulation, since part of its
state (its locking status) is exposed to anyone who has a pointer to the object.
To fix this, Luna only allows a class A to synchronize on remote pointers of
class A (or of a subtype of A, since these can be coerced to type A). This
protects synchronization in the same way that Java’s private  qualifier
protects fields and methods, and enables the sharing of ADT’s between tasks:
if two classes share abstract datatype objects, such as Vector , they trust the
shared ADT implementation to never hold locks indefinitely. Like the J-
Kernel, Luna relies on trust to effectively share abstract datatypes.

Unfortunately, it is still possible to hold locks on local pointers
indefinitely, under Java’s permissive rules for local pointers, which means that
a task must be wary of acquiring locks on a remote object—the object’s owner
might be holding the lock forever. Ideally, Luna would change the access
rules for local pointer synchronization as well as for remote pointer
synchronization, but this would break backwards compatibility with Java.

When a task is terminated, it may still hold locks on other task’s objects.
To prevent this from blocking other tasks” progress forever, Luna releases a
task’s remote locks when the task is stopped. Naturally, this raises the
concerns about damaged objects that motivated the task model in the first

place—if a task is shut down while it is atomically modifying a remote object,
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the object is left in an inconsistent state. This problem is solved with a simple
convention: tasks should never modify remote objects in any way that could
leave them in a damaged state. Preferably, remote locks should be used only
for reading, not for writing. The most common use of remote locks is to copy
remote data, which satisfies this convention. If a task needs to update a
remote object atomically, it must make a cross-task method invocation to the
task that owns the object, so that the update is performed locally, protected by
a local lock acquisition. In this way, cross-task method invocations provide a
safe fallback when there’s no shared data algorithm that is robust to task
termination.

In fact, one could argue that remote locks are not necessary at all,
because remote synchronization can be encoded with local synchronization

and cross-task communication. The Vector example above can be written as:

public class Vector {
bhblic static Vector copy(Vector~ from) {
Vector to = new Vector();

Permit p = new Permit();

from.copyl(to @ p);
p.revoke();
return to;

private synchronized void copyl(Vector~ to) {
... copy data from “this” to “to”...

Figure 4.5: Synthesizing remote locks

Under this implementation, task A copies task B’s Vector object by
transferring control to B’s copyl function, which acquires a lock and copies
the data. Unfortunately, this raises the cost and complexity of copying.

Furthermore, B cannot allocate any objects in A’s task directly, so if copyl
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needs to allocate objects in A it must perform a cross-task method invocation
back to A, while still holding the lock in B. This implementation also
undermines Java’s nested lock acquisition rules: a single thread may
reacquire a lock as many times as it wishes without deadlocking, but cross-
task method invocations involve multiple threads. If A calls B, which acquires
a lock and calls A, which calls B and tries to acquire the same lock again, it will
deadlock. Because of these problems, Luna’s remote synchronization is a

sensible feature.

4.3 Method invocations and threads

A method invocation on a remote pointer calls another task's code, and
therefore must execute in one of the other task's threads. This thread switch
allows the caller thread to be killed without abruptly terminating the callee
thread. However, Luna is implemented over Win32 kernel threads, and
switching kernel threads is an expensive operation. Therefore, cross-task calls
only switch kernel threads lazily, when a call must be interrupted. In the
normal case, a cross-task call only switches stacks, which can be done without
involving Win32. To see how this works, consider a method in task A which
calls a method in task B, which in turn calls a method in task C. This sequence
executes in a single kernel thread, but involves 3 separate stacks (see Figure
4.6). If task B is now terminated, B's stack is deallocated, C's method continues
to run in the original kernel thread, and a new kernel thread is allocated
which resumes A's method (and raises an exception in A's method to indicate
that the call to B aborted abnormally). This model is similar to RPC models
described for the Mach [FL94] and Spring [HK93] microkernels. It retains the

advantages of kernel threads, such as scheduling that interacts properly with
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blocking I/0O, while eliminating the cost of switching kernel threads in the
common case. Unlike the J-Kernel’s thread segment mechanism, it allows
immediate and full cleanup of a terminated task’s stack space and heap data.
The details of a cross-task method invocation are as follows. First, the
invocation enters a critical section. Then it checks the remote pointer’s permit
for revocation, and throws an exception if the permit is revoked. The permit
also holds a pointer to the task that created the permit. Each task keeps a free
list of available stacks, and the invocation retrieves a stack from this list (or

allocates a new stack if the free list is empty).

A’s A’s
stack stack
new kernel thread

kernel thread

B’s \ B's /
stack ck
/ N
C’s C's
K k
stac stac old kernel thread

Figure 4.6: Threads and stacks in cross-task invocations
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Next, the invocation performs some bookkeeping work. The bottom of
each stack contains a block of bookkeeping data, and the top of the stack is
aligned to a power of 2 boundary, so that the location of the bookkeeping data
is calculated with a simple bit-wise && operation followed by an | |
operation. Currently, stacks are 64 kilobytes long, and a virtual memory
guard page prevents execution from running off the top of the stack. A cross-
task method invocation saves the following information in a stack’s data area:

* apointer to the kernel thread, to help the termination
mechanism find and suspend a stack’s thread while the stack is
being destroyed,

* the permit of the remote pointer, used to implement cross-task
exception handling, and

* apointer to caller’s stack, saved in the callee stack data, and a
pointer to the callee’s stack, saved in the caller stack data, so that
a chain of stacks in a single kernel thread form a doubly linked
list.

The doubly linked list is used during the termination process: in Figure
4.6, the termination mechanism must find A’s stack and C’s stack when task B
is terminated. In retrospect, this explicit list may be superfluous—the callee’s
prologue saves the caller’s frame pointer on the callee stack, which could be
used as a link from the callee to the caller (assuming a safe point mechanism,
described below, that can advance a thread past a prologue or epilogue), and
the link in the other direction could be computed on demand by traversing the
entire list of callee-to-caller links.

In addition, the invocation saves the current stack pointer in the caller’s

stack frame, at a standard offset relative to the frame pointer. This is used to
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restore the stack pointer when the invocation returns or if an exception is
thrown from the callee to the caller.

Finally, the invocation switches the stack pointer to point to the callee
stack frame, exits the critical section, pushes the arguments to the call, and
calls the callee code. The order of these operations is constrained slightly by
on-demand termination. Luna must assume that both the caller and callee
tasks may disappear at any moment, deallocating both the stacks and threads
used by the call. Ideally, critical sections would protect the entire call process,
including the transfer of control from the caller code to the callee code, from
abrupt termination. However, this would require the callee code to exit the
critical section. Unfortunately, the callee code is just an ordinary Java method,
which does not know whether it is being called locally or remotely. Therefore,
the caller must exit the critical section before calling the callee, and for a brief
period of time, the thread runs the caller’s code while using the callee’s stack.
If the caller or callee is terminated during this period, Luna’s termination
mechanism recognizes the situation by comparing the stack pointer (pointing
to the callee stack) with the frame pointer (still pointing to the caller stack),
and it aborts the cross-task call. This does not affect the program semantics,
but it requires the implementation to deal with a tricky special case.

A normal return from a remote method invocation enters a critical
section, restores the caller original stack pointer, returns the callee stack to its
free pool, nullifies the caller’s pointer to the callee, and exits the critical
section. In total, a cross-task call requires entering and exiting a critical section
twice, just as in the J-Kernel.

The callee may also return control to the caller by throwing an

exception. Exceptions in Java are objects, so an exception thrown across a task
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boundary must be referred to by a remote pointer. This remote pointer
consists of a pointer to the exception object paired with the permit of the
remote pointer used to make the cross-task method invocation. Rather than
changing Java’s try/catch mechanism to catch remote pointers directly, Luna
boxes the remote exception pointer inside a local TaskNestedException
object, which the program can catch and then extract the boxed remote

pointer.

4.3.1 Terminating threads

Like the J-Kernel, Luna stops a task’s threads when the task is
terminated. Because Luna’s RPC model dissociates stacks and kernel threads,
Luna’s thread termination is driven by stack termination—Luna finds and
deallocates a task’s stacks, and then rearranges kernel threads to match the
remaining stacks in the system. Each task keeps a list of its stacks. For each
stack in a dying task’s list, Luna looks up the stack’s kernel thread and
advances this thread to a safe point, so that Luna can analyze the state of the
thread. For example, being at a safe point ensures that a thread is not in the
middle of executing a function prologue or epilogue, so that the frame pointer
and stack pointer correctly describe the frames held by the kernel thread. In
addition, safe points record garbage collection information, which is used to
help clean up a terminated stack’s state.

Consider the example above, where, in a single kernel thread, task A
calls task B, which calls task C, and then task B is terminated. After advancing
the kernel thread to a safe point, Luna sees that B’s stack is blocked waiting for

C’s stack to return. Since C will have nothing to return to after B is gone, Luna
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modifies the bottommost return address on C’s stack, which used to point to
B’s code, to point to a function that quietly exits the thread when C returns.

Next, Luna cleans up any global state that the stack has established.
Each stack keeps a list of the remote locks that it holds, and Luna traverses
this list to free these locks. As described below in section 4.6.1, stacks may
register their frames with a permit in order to receive immediate updates
whenever a permit’s state changes. Luna pops each stack frame one by one,
using the garbage collection information in each frame to identify and
unregister any frames registered with some permit.

Finally, Luna sees that A is blocked waiting for B to return. Since B will
never return, Luna assigns a new kernel thread to run A’s stack, and sets the
initial instruction pointer of this kernel thread to an exception handler. The
new kernel thread’s frame pointer is established from the bottommost saved
frame pointer on B’s stack, and the thread’s stack pointer is restored from its
saved value in A’s topmost frame. Callee-saves registers, however, are
impossible to restore—it is conceivable that callee saves registers might be
passed all the way from A through B to C before being spilled, and Luna’s
garbage collection information is not powerful enough to find the spilled
values in C’s stack frames. Therefore, A’s exception handler must assume that
all callee-saves registers are lost, and any values that the handler relies on
must be spilled before making the cross-task invocation to B.

In the example above, B’s stack was stopped while blocked on a cross-
task method invocation. Luna must also be able to terminate threads that are
blocked on kernel I/O, without leaving the I/O in a damaged state. The most
obvious way to stop such thread is to use NT’s TerminateThread  function;

however, NT’s documentation warns that “if the target thread is executing
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certain kernel32 calls when it is terminated, the kernel32 state for the thread's
process could be inconsistent,” so Luna uses a more cautious approach to
stopping the blocked thread. Each Luna thread holds a special NT event that
is signaled when the thread is stopped. Blocking I/O functions in Luna use
asynchronous I/O functions, and then block waiting for either the I/O to
complete or the thread’s special event to be signaled, so that Luna can easily
unblock the thread and cancel the asynchronous I/0 (using NT’s Cancello

function) when the thread is stopped.

4.4 Garbage collection and safe points

Luna extends Marmot’s stop-and-copy garbage collector to deal with
permits and to support safe points at backwards branches. When the collector
traverses a remote pointer, it checks to see whether its permit was revoked. If
the permit is unrevoked, then the remote pointer is treated as a strong pointer,
while if the permit is null or revoked, the remote pointer is treated as a weak
pointer, since the revocation makes the object semantically unreachable
through the remote pointer. This allows a task's objects to be garbage
collected even if there are outstanding revoked remote pointers to the objects.
In particular, when a task is terminated, all of the task's permits are
automatically revoked, causing all the task's objects to become collectable, so
that a task's resources are reclaimed when the task is terminated.

Marmot’s garbage collector cannot run until all threads reach a safe
point, so that Marmot can examine each stack’s state accurately.
Unfortunately, Marmot only places safe points at allocation points and
blocking system calls. Under this approach, a thread can run forever without

allocating memory or blocking on a system call, so that it never reaches a safe
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point, and the garbage collector can never run. Since Luna supports untrusted
applications, it cannot allow a thread to perform this kind of denial of service
attack. Therefore, Luna adds safe points at method calls and backwards
branches. For each method, Luna keeps an array of safe point locations. To
advance a thread to a safe point, Luna suspends the thread, copies the
method’s code into a temporary buffer, overwrites each safe point location in
the temporary buffer with a breakpoint instruction, flushes the instruction
cache, changes the thread’s instruction pointer to point to the temporary
buffer, resumes the thread until it encounters a breakpoint, and then transfers
the instruction pointer back to the original code, advanced to the safe point
location reached in the temporary buffer. By acting on a copy of the code
rather than modifying the original code, the advancer allows other threads to
concurrently run in the original code. This enables Luna to use safe points to
terminate a task’s threads, without suspending all the threads in the system.
Native code and exception handling complicate Luna’s safe point
mechanisms. Calls to native code must either poll to check if Luna needs to
interrupt a thread, or, if the native code needs to block indefinitely, register a
marker on the stack that Luna uses as a starting point when scanning the
stack. Exceptions are tricky because they may be thrown at non-safe points in
the code (since practically any pointer operation can throw a null pointer
exception, it seemed wasteful to make every exception throwing point a safe
point). This means that the exception handling process must not allocate any
memory until the thread can be advanced to a safe point. Otherwise, this
memory allocation could trigger garbage collection while the thread is still at a
non-safe point, which would deadlock the exception handling process.

Because of this, Luna’s exception handling process first advances the thread to
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a valid exception handler in the Java code, which is a safe point, then allocates
the exception object and fills in the exception object’s stack trace, and then

runs the handler.

4.5 Tasks and dynamic loading

The J-Kernel, implemented on commercial machines with dynamic
loading, had many class loading features already at its disposal. Luna, on the
other hand, has to cobble together its dynamic loading mechanisms from
scratch, based on a virtual machine (Marmot) that was designed to favor
running times over compile times. Consequently, Luna’s dynamic loading is
still done partially by hand, although it would not be difficult to automate,
based on techniques from the J-Kernel. Luna code for a task is compiled with
guavac to produce bytecode, which then passes through the Marmot compiler
to produce a collection of assembly language files. These are assembled to
produce binary coff files. When a new task is launched, Luna’s dynamic
loading mechanisms load and link the coff binaries into a running Luna
virtual machine. When the task is terminated, the binaries are immediately
unloaded. The garbage collector does not need to run before the code is
unloaded, because Luna’s termination mechanisms ensure that the code is
unreachable.

Marmot compiles whole programs at once, including every class that a
program relies on. Every library class used by the program (even
java.lang.Object ) is recompiled whenever the program is recompiled.
Originally, Luna followed this model, which meant that each task loaded
every class separately. Tasks did not share the compiled code for classes. This

quickly proved impractical, because Marmot’s run-time system (and Luna’s
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extensions to it) are largely written in Java, and it is extremely unnerving to
have multiple copies of the run-time system’s own classes floating around,
some of which are liable to be unloaded it any time. Furthermore, replicating
the same code in each task wastes memory, potentially degrading locality.

On the other hand, giving each task its own classes gives each task its
own static fields, solving one of the difficulties in the J-Kernel’s linking
mechanisms. Even better, it gives each task the opportunity to specialize the
compiled code, based on static whole-program analysis of all the classes used
by the task. Marmot performs several whole-program optimizations: inter-
module inlining, uninvoked method elimination, static method binding, and
stack allocation of objects. Luna preserves all of these except for stack
allocation, which adds entries to method tables in an unpredictable way;
Method table layouts must be consistent across all tasks for cross-task method
invocations to work correctly, which means that integrating Marmot’s stack
allocation into Luna would require some effort.

Because there are both advantages and disadvantages to sharing code
between tasks, Luna implements a compromise—code for some classes is
shared, and code for other classes is not. Currently, the set of classes that
share code, listed in Table 4.2, is hard-wired. Some of these classes, such as
String , were hand-modified to implement per-task static state rather than
global static state. A more flexible and automatic approach to sharing code

would be desirable.
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Table 4.2: Classes that share code (all arein java.lang)

Object , Class , VTable, Cloneable , Monitor , Thread , KThread ,
UThread, Task, ThreadPool , ListBase , Revocable , RevocableTree
Permit , RegisterFrame , Mother , String , StringBuffer , Character ,
Runnable , Throwable , Error , Exception , RuntimeException ,
StringIndexOutOfBoundsException , ArraylndexOutOfBoundsExce ption
ArrayStoreException . NullPointerException , InternalError ,
ArithmeticException , TaskException , IllegalMonitorStateException ,
TaskDeathException , TaskNestedExcepti on, RevokedException
NegativeArraySizeException , CloneNotSupportedException ,
lllegalThreadStateException , InterruptedException ,
lllegalArgumentException , VirtualMachineError

4.6 Micro-benchmarks and optimizations

Operations on remote pointers require synchronization, which is
expensive on modern processors. On a 266MHz P6 processor, a lock followed
by an unlock, both written in hand-optimized assembly using an atomic
compare and exchange instruction, takes 80 cycles when measured in a tight
loop. The bottleneck is access to the bus: on a multiprocessor, an atomic
operation must “lock” the bus while it executes. On a uniprocessor, the bus
lock may be safely omitted, which cuts the cost of a lock/unlock sequence to
20 cycles. Because the choice of uniprocessor vs. multiprocessor has such a
large impact on the cost of remote pointer accesses, this section reports
benchmark results on both uniprocessor and multiprocessor configurations.

Table 4.3 shows the performance of local and remote field accesses, and
local and remote method invocations to a function with an empty body. Both
the local and remote method invocations perform a simple method table
dispatch. All measurements indicate the number of cycles taken on a 266MHz
P6 processor with 64MB of RAM and 16K /512K L1/L2 data cache, measured
in a tight loop (note: an empty loop takes 2 cycles per iteration; this was not

subtracted from the numbers below).
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Table 4.3: Remote pointer performance, without caching optimizations

local remote remote
(uniprocessor) | (multiprocessor)
field read 3 5 94
field write 3 34 94
method invocation | 10 111 228

The cross-task invocations, while slower than local invocations, are
nevertheless faster than round-trip IPC on the fastest x86 uniprocessor
microkernels [LES+97], faster then J-Kernel capability invocations, and orders
of magnitude faster than Win32 LRPC calls. Unfortunately, the field accesses
that require locks are slow to the point of being useless: if shared data were
always so expensive to access, it would make more sense to copy data, as in
the J-Kernel, than to share it. Luckily, standard caching and invalidation
techniques apply to remote pointer accesses, because accesses to the data are
more frequent than revocation of the data. This is analogous to virtual
memory, which stores access control bits for each page in a page table. The
cost of virtual memory's access control is acceptable because a translation
lookaside buffer (TLB) caches the page table information, and is invalidated
whenever the page tables are modified (which is expected to occur

infrequently).

4.6.1 Caching permit information

This section describes how Luna imitates a hardware TLB to reduce the
cost of repeated access checks of the same permit. However, Luna's approach
differs from a hardware TLB in that a TLB operates entirely on dynamic
information, while Luna takes advantage of static information to detect permit
reuse. As a simple example, consider the following loop, which zeroes the

elements of a remote list.
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void zero(List~ list) {
while(list = null) {
list.i=0;
list = list.next;

Figure 4.7: Permit caching example |

When translated into Marmot’s typed high-level SSA representation,

where each variable is read-only and initialized in one location, this loop looks

like:
void zero(List~ list0) {
for(;;) {
List~ listl = merge(list0, list2);
if(listl == null) break;
listl.i = O;
List~ list2 = listl.next;
}
}

Figure 4.8: Permit caching example |

As Luna compiles this function from a typed high-level representation
to a typed low-level representation, it adds type information to indicate
repeated uses of the same permit, similar to the typed representations
described in section 3.4. This information is computed using a
straightforward intraprocedural dataflow analysis on the SSA representation.
The analysis assigns a permit variable to each variable x holding a remote
pointer, according to the following rules:

» If variable x is initialized by reading a local pointer field, array
element, or return value from a remote object held by variable y,

then x inherits y’s permit variable. The expression “list2 =
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listl.next ” falls under this case, since next is a local pointer
tield of the class List

» If a variable x is initialized by merging together variables y,,...,y,,
and y,,...,y, all have the same permit variable, then x is also
assigned this permit variable. The expression “listl =
merge(list0, list2) ” falls under this case.

* Otherwise, a new permit variable is created for x. For example,
list0O is given a new permit variable.

For the code shown in Figure 4.8, one permit variable (call it p) is

created and assigned to list0O , listl , and list2

Ap.void zero(List{ p} list0, permit{ p} pO) {
for(;;) {
List{ p} listl = merge(listO, list2);
if(listl == null) break;
listl.i = 0;
List{ p}list2 = listl.next;

Figure 4.9: Permit caching example 111

The intermediate representation shows that p is checked repeatedly in
the inner loop. Based on this, Luna inserts code outside the loop to cache this
permit's revocation flag in a register or stack slot, so that an access check is
done with a simple test of the cached value, with no locking. At run-time, this
caching code adds the current stack frame to a doubly linked list held by the
permit, and removes the stack frame from the permit's list after the loop is
tinished. The cost to add and then remove a frame from a permit's list is about
60 cycles on a uniprocessor and 175 cycles on a multiprocessor (where a bus

lock is needed to implement a critical section), which means that the
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optimization pays off after about 2 or 3 accesses to the shared data. If the
permit is revoked, Luna’s run-time system invalidates the cached information
in each stack frame in the list by suspending each affected frame's thread,
advancing the thread to a safe point, and then using the GC information at the
safe point to determine which registers and stack slots must be modified to
invalidate the cached access control information.

The caching optimization removes locking from an inner loop,
eliminating the major cost of Luna’s revocation checks. In fact, in some
circumstances it is possible to go further and completely eliminate the check in
the inner loop. Luna performs this optimization under the following
conditions: (i) the loop contains no call instructions, exception handlers, or
other loops, (ii) the loop uses only one permit, and (iii) all paths inside the
loop from the loop header block back to itself check the permit for revocation.
If these are satisfied (the zero loop, for example, satisfies them), Luna places
safe points before the loop's revocation checks rather than at the loop's
backwards branches, and then omits the code for the revocation checks
entirely. If the permit is revoked, and the thread is advanced to a safe point
inside the loop, then the thread is left at a point where a revocation check
would have appeared, and a revocation exception is raised asynchronously in
the thread at this point, so that it appears to the user that there was actually a
check in the code there. Since Luna advances Java code to a safe point by
setting breakpoints rather than by polling, this optimization reduces the per-
iteration cost of the revocation checks to zero.

These optimizations preserve the original semantics of the Luna
program: they only throw exceptions at points where the original Luna

program could have thrown an exception, and precisely reflect the state of the
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program when the revocation exception is thrown. A call to Permit.revoke
raises all the necessary exceptions before returning, so that afterwards, no
threads can possibly access data using the permit (i.e. revocation is still
immediate, not delayed). Stated more strongly, any possible program
execution trace under these optimizations is also a legal execution trace in an
unoptimized Luna implementation.

Figure 4.10 shows the assembly language code generated for the body
of the zero loop, as well as the code generated for an equivalent loop over a
local list. Except for a difference in the instruction used to test for null, they
are identical, and both execute in 3 cycles per iteration. Nevertheless, while
the inner loops are identical, the remote traversal must manipulate the
permit's linked list before and after the inner loop (in a critical section, of
course), and the cost of this is significant: Table 2.1 shows the cost of
repeatedly zeroing the elements of the same list, for lists of size 10 and 100.
Luna's static analysis makes the speed of these loops reasonable, but not as

good as in the local case.

local list traversal remote list traversal

loop: loop:

I* list.i =0 */ [* list.i =0 */

mov dword ptr [eax+8],0 mov dword ptr [eax+8],0

/* list = 1list.next */ [* list = list.next */

mov eax,dword ptr [eax+12] mov eax,dword ptr [eax+12]

[* if(list == 0) goto done */ /* if(list == 0) goto done */

test eax,eax cmp eax,0

je done je done

jmp loop jmp loop
done: done:

Figure 4.10: Inner loop assembly code for local and remote list traversals
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Table 4.4: Speed of local and remote list traversals

local remote remote
(uniprocessor) | (multiprocessor)
10 element list 46 105 221
100 element list 316 375 493

Even if Luna extended the static analysis to encompass more than inner
loops, no amount of static analysis can eliminate all the run-time checking,
and Table 4.3 and Table 4.4 show that the penalty for each operation that
acquires a lock is steep. This suggests that additional optimizations, such as
dynamic reuse detection (e.g., as keeping a hash table of recently used permits

in each thread) may also be needed to avoid lock acquisitions.

4.7 Lunaweb server

This section describes a Luna port of the web portion of the
web/telephony server described in chapter 2. The server implements Sun's
servlet API [Java]. To preserve this API, the Luna version of the server
includes wrapper classes which lazily copy remote object data into local
objects when the servlet requests the data, so that a servlet need not concern
itself with remote pointers directly. Table 4.5 below shows the time taken to
dispatch a request to a servlet (which lives in a different task from the server)
and process the response, for a servlet which returns a fixed sized message,
not counting the time to transfer the data to or from the underlying sockets,
and not counting the cost of spawning a thread to handle the request. Table
4.5 shows Luna's performance with and without the caching optimizations,
and compares this to the performance of a modified server where both the

server and servlet reside in the same task, so that no remote pointers are used.
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The measurements show that Luna's caching optimizations pay off for large

messages, especially for a multiprocessor.

Table 4.5: Servlet response speed

Single Multiple tasks, Multiple tasks,

task (local | no caching caching

pointers Uni- Multi- Uni- Multi-

only) processor | processor processor | processor
10 byte 730us 730us 760us 730us 730us
response
100 byte | 770us 800us 830us 770us 770us
response
1000 byte | 770us 1100us 1400us 970us 1000us
response




CHAPTER FIVE:

ALTERNATE APPROACHES TO THE TASK MODEL

The task model implemented by Luna and the J-Kernel differs

significantly from Java's thread group model, which creates an opportunity to

explore the design space between the two approaches. This chapter dissects

the task model by breaking it into smaller pieces and examining these pieces

in isolation. It also makes connections to other implementations of the task

model, such as Alta [BTS+00], KaffeOS [BH99, BHL00], DrScheme [FFK+99],

and JavaSeal [VB99]. This chapter is more speculative than the J-Kernel and

Luna chapters—it is a mixture of past work, related work, future work, as well

as some ideas that may not work.

An implementation of the task model must provide answers to the

following questions:

Termination: what is shut down when a task is terminated—
objects, code, threads, or some combination of these?

Task boundaries vs. code boundaries: are common abstract
datatypes, like String  and Vector , loaded separately into each
task that uses them (either through sharing or replication), or do
these datatypes live in one special task, so that every method
invocation on one of these objects crosses a task boundary?
Enforcing the task model: is this the responsibility of the
programmer or does the system guarantee the task model (i.e. is
enforcement voluntary or mandatory)?

Symmetric vs. asymmetric communication: does the same

communication mechanism apply to a downcall (an applet
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calling a browser) as to an upcall (a browser calling an applet),
or does the communication mechanism depend on trust in one
direction? Can mutually suspicious tasks communicate?
Server-centric vs. client-centric design: does a central server task
perform much work, or is most work pushed into client tasks?
Sharing: shared memory vs. RPC communication—is one
preferred over the other? Should both be supported? What
types of data may be shared between tasks—primitive types,
abstract datatypes, immutable data, functions and methods,
remote pointers, or RPC stubs?

Revocation: should it be provided at all, or for only some types
of operations (e.g. cross-task calls, but not field /array accesses)?
Should revocation be immediate or delayed?

Resource accounting policy: which task gets charged for each
object?

Garbage collection: does one heap suffice for all the tasks in the

system, or does each task need its own heap?

The length of this list makes it impractical to explore every possible

permutation of these questions. Instead, the rest of this chapter discusses

these topics one by one, using each topic to highlight lucrative points in the

design space and to point out important pitfalls in various approaches.

5.1 Termination, task boundaries

“What is shut down when a task is terminated—objects, code, threads, or some

combination of these?”
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“Task boundaries vs. code boundaries: are common abstract datatypes, like St ri ng
and Vect or , loaded separately into each task that uses them (either through sharing
or replication), or do these datatypes live in one special task, so that every method
invocation on one of these objects crosses a task boundary?”

This section breaks the task model into smaller pieces. Rather than
terminating threads, objects, and code together, what if only a subset of these

resources were deallocated when a task is shut down?

5.1.1 Terminating threads

To start, consider terminating only threads when a task is shut down.
Java’s thread groups implement this strategy, which creates problems of
damaged state and failure to unload malicious code. Terminating threads
may leave two forms of damaged state. First, if a client calls a server and kills
the thread while the server is manipulating an internal data structure, the
server’s data structure is left in an inconsistent or deadlocked state.
Traditional operating systems solve this problem either by not sharing threads
between a client and server (i.e. switching threads when the client calls the
server), or by placing the thread in a special “kernel mode” as it runs in the
server, and delaying termination of the thread until it exits kernel mode. The
J-Kernel and Luna are examples of the first approach, which has the
advantage of extending to mutually suspicious communication. KaffeOS is an
example of the second approach, which has the advantage of being easier to
implement efficiently. KaffeOS contains two modes, user and kernel, and a
thread running in kernel mode cannot be killed. Standard Java neither has
kernel modes nor switches threads, leaving it vulnerable to damaged server

state.



101

The second form of damaged state is damaged objects: abstract datatypes
that are left in an inconsistent or deadlocked state when the thread that is
modifying the object is terminated. The J-Kernel and Luna solve this problem
by terminating objects as well as threads when a task is terminated, so that
damaged objects become inaccessible. Alta and KaffeOS restrict the types of
objects that tasks can share, so that it is not so easy to share abstract datatypes
in the first place; if two tasks do share an object that relies on synchronization,
then it is up to the programmer to implement this synchronization in a way
that is robust to termination.

The standard Java API defines two ways of stopping a thread, stop
and destroy (the former was deprecated, the latter is still not implemented,
as of Java 1.3). Stop releases a thread’s locks when killing the thread, leaving
objects in an inconsistent state, while destroy does not release a threads
locks, and therefore leaves objects in a deadlocked state. A better approach
would be to place a thread’s locks in a special “damaged state” when the
thread is killed, so that any subsequent attempts to acquire the locks raise an
exception, rather than succeeding (as with stop ), or deadlocking (as with
destroy ). In other words, if the system cannot make damaged objects
inaccessible, like Luna and the J-Kernel do, at least it should signal an error

whenever a damaged object is accessed.

5.1.2 Terminating code

The thread termination approach has two serious problems: “good”
code may be unintentionally interrupted, leaving damaged state, and “bad”
code may continue to run. In general, there is no guarantee that “bad” code

will not run again even after the “bad threads” are gone. This suggests a
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different termination mechanism: rather than stop a task's threads, simply
unload the task's code, and raise an exception whenever a thread attempts to
run the unloaded code. In this approach, a task is defined by its code, rather
than its objects or threads.

One nice feature of this model is that damaged objects are dealt with
neatly. Suppose all of an object's methods are defined by a single task. As
long as the task stays alive, the methods will never be interrupted, and the
object will never be damaged; this is very different from the thread-
termination model where built-in classes like String  and Vector may be
interrupted when some arbitrary applet's thread is stopped. If the task that
defined the methods is killed, all of the methods stop working at once, and the
object raises an exception whenever it is invoked. The situation is more
complicated when overriding is taken into account, since a single object may
have methods defined by multiple tasks.

As far as I know, code-based termination would be easy to implement.
To implement immediate termination, the system can overwrite a task's code
with breakpoints or illegal instructions (and flush the instruction cache), or
change the virtual memory protection to make the code inaccessible (and flush
the TLB). Eventually, the garbage collector reclaims the code's space by
invalidating any function pointers to the unloaded code.

One potential difficulty in this scheme is inlining. If task A inlines task
B's code, then if A gets terminated, this inlined code gets unintentionally
interrupted. Likewise, if B gets terminated, then the inlined code fails to stop.
Solving this problem would mean tracking the ownership of inlined code

inside individual functions, and possibly forgoing some optimization
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opportunities when it is impractical to track code ownership at such a low

level.

5121 Codesharing

Cross-task inlining may seem unimportant at first, since task crossings
in traditional systems are infrequent. However, code-based termination leads
to a very different notion of task crossing than found in Luna or the J-Kernel.
In all language-based systems that I am aware of, common datatype classes
(e.g. String and Vector in Java) are shared among tasks. By contrast, in the
code-based termination approach, String and Vector belong to a different
task than, say, an applet would belong to. Every call to a method of String
or Vector is a task crossing in this model, so if the applet inlines calls to
String , care must be taken not to interrupt the inlined code when the applet
is shut down. Interrupting a call to Vector , for example, could produce a
damaged Vector object.

Is this the right model, though? Perhaps an applet's call to a method of
Vector should be interrupted when the applet is stopped. The Luna/J-
Kernel model would stop a call to String  or Vector , as long is it was a task-
local call, rather than a cross-task call. If an applet manages to send one of the
methods in String  or Vect or into an infinite loop, then the Luna/J-Kernel
model would break this loop, while the code-based termination model would
not.

The code-based termination does not explicitly recognize task
crossings. For example, when a compiler generates code for a method
invocation, the compiler does not always know whether the call will cross into

another task or not. One drawback of this is that there is no opportunity to



104

automatically insert extra actions, such as revocation checks, at the boundaries

between tasks.

5.1.3 Terminating threads and code

The Luna/J-Kernel task model ensures that a task’s threads only run its
own code. Any system that enforces this property automatically terminates a
task’s code when it terminates a task’s threads. This raises the possibility of
defining a task as a collection of threads and code together, but letting objects
float freely between tasks. The danger of this is that overridden methods in
these objects will allow one task’s threads to call another task’s code. The next

section describes restrictions on object sharing to prevent this.

5.2 Sharing

“Shared memory vs. RPC communication: is one better than the other? Should both
be supported? What types of data may be shared between tasks—primitive types,
abstract datatypes, immutable data, functions and methods, or RPC stubs?”
Alta, KaffeOS, Luna, and the ]J-Kernel all enforce boundaries between
tasks by restricting the types of objects that tasks may share:
* the J-Kernel and Luna support shared RPC stubs, which provide
mediated access to other tasks” code,
* Luna supports remote (mediated) pointers to arrays and fields,
and
* Alta and KaffeOS support direct (unmediated) pointers to other
tasks” data, but not other tasks’ code.
None of these systems support unmediated access to other tasks’ code.
This property is enforced by various mechanisms. The J-Kernel’s copy

mechanisms reject classes that contain foreign code. Luna mediates all data
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access with permits and remote pointers. Alta and KaffeOS disallow sharing
of any datatypes that might contain foreign code in overridden methods.
Unfortunately, Java is biased towards classes whose methods may be
overridden. For example, Alta and KaffeOS disallow the sharing of an object
containing a field of type Object , because this field might hold an object that
overrides one of Object ’s methods, such as equals or hashCode . A pure
object-oriented language, where all methods may be overridden, would be
even worse. Nevertheless, this unmediated sharing is much easier to
implement efficiently than Luna’s mediated sharing. However, KaffeOS and
Alta do not have a prominent RPC mechanism like Luna and the J-Kernel do,
which limits their ease of use. Is there a way to combine the sharing in these
systems that is easy to implement and supports both shared data and RPC
communication? I believe that there is—but not necessarily in Java. The
following section sketches such an approach for a non-object-oriented type

system.

5.2.1 Sharing in non-object-oriented languages

To see the impact of object-orientation on sharing, consider a non-
object-oriented type system consisting of primitive types, tuples, records,
unions, arrays, recursive types, universally quantified polymorphic types,
existentially quantified types, and functions. I hypothesize that all of these
types, except functions, satisfy Alta’s and KaffeOS’s criteria that they cannot
be used to call foreign code. That is, if a type contains no functions, then an
object of that type may be safely shared between tasks, without accidentally
importing foreign code into a task. This means that a task’s threads only run

its own code. Even though object sharing compromises the task model
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somewhat (it is no longer clear who “owns” an object), a task’s code and
threads are still well defined.

So far, this hypothetical system supports shared data but not RPC. To
rectify this, simply add a new type, the capability, which is exactly like a
function except that it performs special cross-task functionality when invoked,
such as checking for revocation and switching threads, and it may be shared
between tasks. Capabilities need not copy data, since data may be shared
directly.

Unfortunately, Java does not have tuples, records, unions, simple
recursive types, universally quantified polymorphic types, or existentially
quantified types. Besides primitive types and arrays, Java has classes, which
contain functions and are therefore not shareable under the rules above.
Perhaps this solution would be more appropriate for a non-object-oriented
language like ML, although some work might be required to support
modules. ML has the additional advantage of encouraging immutable data,
which eliminates many of the problems with inter-task locks encountered in

Luna.

5.2.2 Revocation

“Should revocation be provided at all, or for only some types of operations (e.g. cross-
task calls, but not field/array accesses)? Should revocation be immediate or delayed?”
The previous section presented a hypothetical system in which RPC
stubs (capabilities) support revocation, but other datatypes are shared without
supporting revocation. This design has clear implementation benefits, since
experience with Luna shows that revocation for field and array accesses is

harder to implement efficiently than revocation for functions. However, Luna
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assumed immediate revocation, implemented with explicit run-time checks.
Another possibility is to use the garbage collector to implement revocation. In
this implementation, revocation is delayed until the next full garbage
collection, at least for field and array accesses. Having immediate revocation
for method invocations but delayed revocation for field and array accesses is

not orthogonal, but might be a reasonable compromise in practice.

5.3 Enforcing the task model, symmetric vs. asymmetric

communication

“Is enforcing the task model the responsibility of the programmer or does the system
guarantee the task model (i.e. is enforcement voluntary or mandatory)?”
“Symmetric vs. asymmetric communication: does the same communication
mechanism apply to a downcall (an applet calling a browser) as to an upcall (a
browser calling an applet), or does the communication mechanism depend on trust in
one direction? Can mutually suspicious tasks communicate?”

A task system supporting untrusted code must have some mandatory
enforcement of its task model, because it cannot trust all the tasks in the
system to voluntarily obey the task model’s constraints. However, the
termination mechanisms may depend on the voluntary behavior of other,
more trusted tasks. In KaffeOS, a dying task’s threads are stopped, but only if
the threads are not currently running kernel code. Thus the kernel’s
cooperation is needed to ensure that the task is terminated; in this case, a call
from the task to the kernel must return in a reasonable amount of time.

As another example, DrScheme does not implement special
mechanisms to avoid damaged objects. However, damaged objects may be

avoided voluntarily if tasks explicitly relinquish pointers into dying tasks
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(DrScheme’s custodians do not do this automatically). If tasks do not
relinquish these pointers, they risk seeing damaged objects, and they risk
invoking code in the dead task.

On one hand, voluntary mechanisms are simpler to implement than
mandatory mechanisms. DrScheme is not encumbered by the J-Kernel’s
heavyweight capabilities or Luna’s complex revocation implementation. On
the other hand, with extra support machinery, programmers can afford to be
more daring, and share objects with fewer risks, because the system will take
care of them. For example, Luna’s remote pointers pinpoint the places where
a programmer needs to manage sharing, and the mandatory revocation
mechanisms ensure that mistakes cannot lead to a damaged object being
accessed, or code in a dead task being run. This is similar to the way that
static type safety and garbage collection allow a programmer to treat pointers
far more freely than in a language like C or C++, despite protests from C
programmers that type safety restricts pointer operations.

However, Luna’s type system, like all decidable type systems, is
conservative: it disallows some programs that could be proven safe, simply
because the type system is not powerful enough to prove these programs’
safety. An example of this is the way Luna forces programs to copy data even
when it is clear that direct access to the remote data poses no dangers.

Another argument for mandatory mechanisms is that voluntary
mechanisms often cannot guarantee certain properties. For example, from a
language design standpoint it would be nice to guarantee that no damaged
objects are visible to a program. Under a voluntary approach, a malicious
applet could deliberately create a damaged object (e.g. by creating and then

abruptly terminating a task), and pass this damaged object to the browser
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through a method invocation. Even though the browser’s code may respect
the task model, it may still see damaged objects created by tasks that violate
the task model. Similarly, compilers and run-time systems for safe languages
cannot rely on programmer discretion for their safety. Luna’s whole-task
optimizations are only safe if the task model is enforced, which means that a
system based on DrScheme’s approach cannot perform these optimizations.
Even in a system that relies primarily on voluntary enforcement of the
task model, extra mandatory mechanisms might guard against mistakes. For
example, in DrScheme, overwriting a dead task’s code with breakpoints
would ensure that a parent does not accidentally call a dead child’s code, even

if the parent task is buggy.

5.3.1 Symmetric and asymmetric communication

When a user thread calls the kernel in KaffeOS, the kernel voluntarily
changes the thread’s mode. This voluntary mechanism requires the user
thread to trust the kernel (a malicious kernel could take the thread and run
forever, charging CPU time to the user thread). The kernel typically does not
trust the user thread in the same way; nor does a user thread necessarily trust
another user thread. Similarly, in DrScheme a child task trusts its parent task,
but not vice-versa. This means that separate mechanisms are needed for
parent-to-child communication or child-to-child communication, which makes
communication less orthogonal than in the J-Kernel or Luna, which use the
same mechanisms for child-to-parent, parent-to-child, and child-to-child
communication. On the other hand, child-to-parent communication is more
common than, say, sibling-to-sibling communication, so it may make sense to

optimize the former and disregard the latter, both in terms of speed and ease-
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of-use. In KaffeOS, this trade-off is quite explicit: downcalls into the kernel
are fast and simple, while other communication proceeds through shared

memory buffers, which are not as easy to work with as downcalls.

5.3.2 Server-centric vs. client-centric design

“Does a central server task perform much work, or is most work pushed into client
tasks?”

Since the communication mechanisms in Luna and the J-Kernel assume
mutual suspicion, task boundaries typically coincide with trust boundaries.
For example, tasks are used to account for resource usage, and under mutual
suspicion, task A is unwilling to give task B the right to charge resource usage
to A’s account (and vice-versa). In this case, resource usage boundaries
coincide with trust boundaries. However, if A does trust B, it might allow B’s
code to run under A’s account, so that B performs a service for A and this
service is automatically funded. For example, traditional operating systems
try to charge time spent in the kernel to specific user processes (which
presumably trust the kernel). In a system where user processes are billed for
resource usage, this maximizes billable time.

There are several plausible ways to realize this goal in a language-
based task system. The first is to keep tasks aligned with trust boundaries, but
to use threads to account for resources, rather than tasks, and to let threads
cross task boundaries. This accounts for processor time well enough, but
memory accounting is more problematic, since memory allocated by a thread
can outlive the thread itself. A key goal of the task model is to eliminate this
problem by ensuring that neither a task’s memory nor a task’s threads outlives

the task.
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A second idea is to align tasks with resource boundaries rather than
trust boundaries. If a server performs a service for a client, and wants to
charge the cost of this service to the client, then the server code should be
loaded into the client task, so that it naturally runs on the client’s account.
Language safety protects the kernel’s data from the client, even though they
are both in the same task. KaffeOS and Alta encourage this design, since their
emphasis on shared memory communication over RPC communication makes
it easier for the client to call server code in the client task than to call server
code in a separate task. Because the server runs in the client’s task, it risks
being stopped abruptly if the client task is terminated, possibly leaving
system-wide shared server data structures in a damaged state. To prevent
this, the server code might run in special mode (like KaffeOS’s kernel mode)
that postpones termination while the server code executes. However, the
server code must be careful to always exit this mode before calling client code,
so that the client code does not gain immunity against termination. This is
subtle in an object-oriented language, since client code may reside in
overridden methods of common classes; it is easy to accidentally call one of
these methods (remember the security problems that forced Java’s designers
to disallow overridden methods in String  objects). A key goal of the task
model, at least as developed by Luna and the J-Kernel, is to explicitly mark the
places where a server might end up calling client code, and to automatically
switch threads when the server does call client code.

Looking at the two ideas above, it seems that when resource and trust
boundaries do not coincide, there is a trade-off between using tasks to enforce
trust boundaries vs. using tasks to enforce resource boundaries. Tasks align

either with trust boundaries or with resource boundaries, but not both.
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Perhaps this is only a result of stinginess, though—a third idea is to introduce
more tasks, so that there are enough task boundaries to align with both trust
and resource boundaries. Figure 5.1 shows the idea. The left side is a picture
of client and server tasks in the J-Kernel or Luna, where resource, trust, and
task boundaries all align. The right side splits each client into two tasks, one
running the client code and the other running server code on behalf of the
client, where both tasks’ resources are charged to the client’s account. A
central server task manages activities that cannot be charged to a particular
client. To traditional operating systems designers, this may seem rather
baroque. After all, extra boundaries create extra costs, both in terms of
performance and ease of use. However, language-based protection makes
boundary crossings easier and cheaper, so that such baroque mechanisms are

more practical. Whether this design works well in practice remains to be seen.

client code client code client code client code
client resources client resources client resources client resources
\ / server code server code
server code client resources client resources
Server resources
server code

SErVEr resources

Figure 5.1: Expressing trust and resources with extra tasks
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5.4 Resource accounting policy

“Which task gets charged for each object?”

Luna and the J-Kernel charge a task for the memory that it allocates.
This works largely because a task’s objects are deallocated when the task is
terminated, ensuring that memory is never charged to a dead task. It has the
advantage that it is easy for a task to predict for which memory it is being
charged.

Another obvious policy is to charge a task for objects that are reachable
from the task. The introduction to this thesis argued that this approach is
dangerous when tasks share abstract datatypes, which make it very difficult
for a task to predict for which memory it is being charged. However, there
may be ways to eliminate this uncertainty. For example, KaffeOS tasks share
data in special shared heaps, which are fixed in size and cannot hold pointers
into other heaps, making it very easy for a task to predict what it will be
charged for when using the shared heap. Tasks communicate through side
effects on shared heaps.

For some languages, such as functional languages, fixed sized buffers
and side effects are not appropriate. Perhaps tasks can share abstract
datatypes, but the memory for the implementation of an ADT is charged to
the task that allocated the ADT. As long as the ADT is deallocated when its
allocating task is terminated, this is acceptable. However, this property is not
necessarily easy to achieve. Consider the hypothetical type system from
section 5.2, which supported shared abstractions through a combination of
quantified types and capabilities (but not functions). If task B creates a
capability, packs the capability in an object of type

[B.(B * (int * int * int) * capability(p - int))
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and passes this object to task A, then ideally A should be charged for the two
tuples in the type, but should not be charged for the implementation of 3 or
the implementation of the capability (the notation “capability(f3 - int)”
indicates a capability that takes a 3 as an argument and returns an int).
Intuitively, if task B is terminated, then the capability created by B is revoked,
making (3 useless to task A, so that task A does not care if the implementations
of the capability and of  are deallocated. It is not at all clear how to formalize
this intuition, however. For example, suppose in the above example task B
creates the capability, and another task, C, implements 3 and packs this
together with B’s capability in an object of existential type, which it then gives
to task A. In this case, it is not obvious which task to charge for the
implementation of B—charging task B is not fair, because C allocated the
implementation of 3, possibly without B’s knowledge. Charging C is
problematic because it might be terminated, leaving no one to charge for the
implementation of 3, which cannot be garbage collected because A and B are
keeping it live. Task A could pay, but this violates the original goal: to make

sure that A does not pay for someone else’s abstract datatype.

5.5 Garbage collection

“Does one heap suffice for all the tasks in the system, or does each task need its own
heap?”

While Luna and the J-Kernel implement a model in which it is clear
which task to charge for which resource usage, they do not actually
implement resource accounting and enforce resource limits. Some other
projects have addressed this issue: JRes [CvE98], which was ported to the J-

Kernel, limits a task’s CPU, network, and memory usage, and KaffeOS also
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supports similar limits. Enforcing CPU limits is not too problematic, as long
as the enforcement is not too disruptive. For example, a thread shared
between a client and server should not be stopped abruptly if the client runs
out of memory, because this could leave the server in a damaged state. The
task model, as implemented by Luna, the J-Kernel, Alta, KaffeOS, and
DrScheme, ensures that no such damaged state arises.

However, enforcing memory limits is not as easy as enforcing CPU
limits, even under a model with a clear resource accounting policy. Consider
a system with 10 tasks, each having a 10MB memory limit. Suppose that 9 of
the 10 tasks allocate memory very slowly, while one task rapidly allocates and
throws away memory (perhaps it was written in ML). Despite its rapid
allocation rate, this one task never has more than 1MB of live data, far below
its 10MB limit. Suppose that the task has just allocated 10MB of data, only
1MB of which is still live, and the system detects that the task has reached the
10MB limit. It would not be fair to terminate or suspend the task at this point,
because its live data is still far below the limit. Unfortunately, a system that
allows data sharing between tasks (such as Luna or KaffeOS) cannot tell how
much of the allocated data is live without running garbage collection. But it
would be inefficient to garbage collect all 100MB in the system every time this
one task allocates 10MB—one task with a very small limit could force the
whole system to spend most of its time garbage collecting. The difficult
problem is that one task is causing frequent collections, while other tasks are
causing large collections, so that the system-wide product of the frequency of
collections and the size of collections is much larger than the sum of the
products of the frequency and size of the each task’s individual contribution

to garbage collection. In other words, the large time spent in collection is due
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to an unfortunate interaction between different tasks’ memory usage, rather
than being the fault of any single task.

One solution is to allow tasks to overrun their limits arbitrarily in
between garbage collections. After each collection, the live memory used by
each task is computed and any tasks over their limits are suspended or
terminated. One drawback of this is that it only catches a task long after it has
exceeded the limits. However, under the J-Kernel and Luna’s task model, this
does not cause any permanent damage, because no matter how far the task
went over its limit, all of its memory can be deallocated immediately by
terminating the task, assuming that the system’s policy is to terminate such a

task immediately.

5.5.1 Accounting for collection time

A more subtle issue, raised by Back et al [BTS+00], is deciding which
task should be charged for the cost (in CPU cycles) of the garbage collection
process itself. The cost of a collection is proportional to the amount of live
data in the system for a copying collector, and to the amount of live plus dead
data for a mark-sweep collector, so perhaps each task should be charged for its
live or live and dead data in each collection. However, this is not necessarily
fair—suppose one task allocates a large amount data once, and keeps this
memory live but never allocates any further memory. Ideally, it should be
charged nothing for garbage collection, since it is doing nothing to cause
garbage collection, but it will repeatedly be charged for its live data,
depending on how fast the other tasks in the system allocate data.

An alternative is to charge a task in proportion to the allocation that it

performs during each garbage collection cycle. If we assume an upper bound
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on the fraction of the heap (or semispace) that is live at each collection, and we
assume that allocation proceeds until the heap (or semispace) is completely
tull (i.e. we ignore fragmentation), then the GC cost charged to a task per byte
allocated can be bounded statically by a constant, at least under simple models
of stop-the-world collection. If this constant is reasonably small, then this
solution is arguably fair—a task pays no more than a constant garbage
collection tax on each allocated byte, regardless of what other tasks do.
Whether these assumptions are reasonable, though, is another matter.
Another solution, implemented by KaffeOS, is to give each task its own
heap, and to use distributed garbage collection techniques to garbage collect
each heap separately. This strictly limits the amount of memory that a task
can allocate, because it cannot overrun its own heap. For non-compacting
collectors, it prevents fragmentation attacks; a task can fragment its own heap
but cannot fragment any other task’s heap. However, KaffeOS incurs a run-
time cost when writing a pointer to the heap, because the distributed garbage
algorithm uses a write barrier to detect cross-task pointers (although the static
distinction between local and remote pointers in Luna and the J-Kernel might
be able to eliminate many of these write barriers). In addition, the distributed
garbage collection techniques have difficulties dealing with cycles between
heaps, which KaffeOS solves in part by establishing special shared heaps
between tasks, and allowing pointers into shared heaps but not out of shared

heaps.

5.6 Conclusions

In the past few years, several interesting implementations of the task

model have emerged. Yet, no single design seems superior in every respect.
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Instead, a comparison between various approaches reveals tradeoffs between
ease of use, ease of implementation, performance, flexibility, and guarantees
of behavior. For example, mandatory enforcement of the task model is more
difficult to implement than voluntary enforcement, but offers more flexible
communication patterns and better guarantees of behavior. Similarly,
allowing direct sharing of objects increases performance and ease of use, but
complicates resource accounting. In light of these tradeoffs, the right
approach depends on the programming language and the needs of the
applications. Languages that frequently mix code and data, such as Java,
benefit from rigid task boundaries to ensure that code does not migrate from
one task to another, while less object-oriented languages may allow data to
tlow more freely across boundaries. Applications that load small, limited
extensions may prefer the ease of implementation provided by voluntary
enforcement, while environments with complex interactions between
untrusted tasks require the guaranteed behavior that mandatory enforcement

provides.



CHAPTER SIX:
CONCLUSIONS

In this thesis, I have argued that safe languages must incorporate
operating system features in order to adequately support systems that execute
untrusted code, such as browsers, servers, agent systems, databases, and
active networks. Moreover, [ have argued that adding small features in
isolation does not adequately meet the needs of these applications. Instead,
safe languages need large-scale aggregate structures that encapsulate each
program’s resources and define clear boundaries between different programs’
code.

The two systems presented in this thesis, the J-Kernel and Luna,
implement an aggregate structure called a fask, in order to control a program’s
code, threads, and objects together. Thanks to this aggregation, tasks make
guarantees that are impossible if these resources are managed separately. For
example, terminating a program’s threads without terminating its objects
cannot guarantee the absence of damaged objects, and terminating a
program’s threads without terminating its code cannot guarantee that
malicious code is unloaded on demand.

These concerns are especially relevant to an imperative object-oriented
language like Java. In Java, abstract datatypes are protected by locks, raising
the possibility of damaged objects, and malicious code may hide in overridden
methods, making it difficult to eliminate all traces of a malicious program.
Standard Java APIs for communicating with untrusted code address these

issues by minimizing object orientation. These APIs typically accept non-
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object-oriented data from untrusted code, such as Strings  (which are final)
and arrays, rather than non-final classes like Vector and Hashtable . Thisis
analogous to C and C++ programmers who minimize dynamic memory
allocation in order to avoid dangling pointers and memory leaks. By contrast,
the J-Kernel and Luna provide mechanisms to automatically track the
boundaries between tasks, giving programmers tools to manage
communication between tasks with fewer risks.

The task model is not free; the J-Kernel and Luna sacrifice some
performance to enforce task boundaries. First, control over threads requires
extra work to manage calls from one task to another. Second, shutting down a
task’s objects requires support for revocation, which is difficult to implement
efficiently for field and array accesses. Third, keeping “foreign code” from
migrating into a task requires either restricting the types of objects that tasks
can share, or copying objects to slice away or reject outside code. Our
experience using the J-Kernel and Luna to build applications demonstrate that
these costs are small compared to other Java overheads present in the
applications. This suggests that an important area of research for extensible
internet applications is how to design, implement, and compile these
applications for maximum performance. 1/O performance, in particular, is
critical for web servers, active networks, and agent systems, and Luna’s fine-
grained sharing and revocation could improve this by exposing low-level
hardware resources, such as network buffers, to applications.

Above all, the J-Kernel and Luna show that traditional operating
system functionality does not require a traditional virtual-memory based
implementation, nor does it require replacing well-typed language-based

communication mechanisms between tasks with untyped traditional
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operating system communication mechanisms. The J-Kernel’s fast copy
mechanisms demonstrate how strong typing and close cooperation between
tasks yields orders of magnitude higher performance than loosely coupled
mechanisms such as Java’s RMI implementation built over serialization.
Luna’s fast cross-task method invocation implementation and special
revocation optimizations show how cooperation between the compiler and
run-time system can outperform traditional hardware-based implementations
of communication and protection. Furthermore, the communication and
protection mechanisms implemented by Luna and the J-Kernel provide a
much higher level of abstraction to the application programmer than
traditional operating systems or micro-kernels, and a stronger, more static
enforcement of these abstractions.

There is an ongoing debate as to whether operating system designers
should be abstraction merchants or performance fanatics. Language-based
protection offers a way to implement operating system functionality that

achieves both goals.
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